MATHEMATICS AND ALGORITHMS



For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Printed in the United States of America.
151413121110987654321

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram') make no representations, express,
statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,
any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of
which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet
your requirements or that the operation of the Software will be uninterrupted or error free. As such,
Wolfram does not recommend the use of the software described in this document for applications in
which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.



Contents

Numbers
Types of Numbers . ... ... . 1
Complex Numbers . . ... .. . e 3
Numeric Quantities . ... ... ... . . . . 4
Digits in NumMbers . ... ... . 5
Exact and Approximate Results . .. ... ... .. ... .. 8
Numerical Precision . ... ... . . 10
Arbitrary-Precision Calculations .. . .. ... ... ... ... ... ... .. 15
Arbitrary-Precision Numbers . ... ... ... . . . .. 16
Machine-Precision Numbers . ... ... .. .. . . 25
Interval Arithmetic ... .. ... .. 29
Indeterminate and Infinite Results . .. ... ... ... ... ... ... 31
Controlling Numerical Evaluation .. ... ... ... ... . ... .. . .. ... . . . 34

Algebraic Calculations
Symbolic Computation . ... ... . . . e 35
Values for Symbols . . ... ... . e 37
Transforming Algebraic EXpressions .. ........... ... .. ... ... . . .. 40
Simplifying Algebraic EXpressions .. .......... ... .. ... .. . . 41
Putting Expressions into Different Forms . . .......... ... ... . ... . ... . ... ... ... 43
Simplifying with Assumptions . . ... ... .. ... . ... .. 48
Picking Out Pieces of Algebraic Expressions .. .................................. 49
Controlling the Display of Large Expressions .. ............... ... .. ... iiiuini.n. 51
Using Symbolsto TagObjects . .......... ... ... .. . . . . .. 52

Algebraic Manipulation
Structural Operationson Polynomials ........... ... ... ... ... ... ... ... ... ....... 55
Finding the Structureof a Polynomial ........... .. ... .. .. .. ... ... ... ... ....... 58
Structural Operations on Rational Expressions .. ............ ... ... ... ... ........ 60
Algebraic Operationson Polynomials .. ........ ... ... ... .. ... ... ... ........... 63
Polynomials Modulo Primes . ... ... ... .. . . . e 72
Symmetric Polynomials . . ... ... . . . e 73
Polynomials over Algebraic Number Fields .. ...... ... ... ... ... ... . ... ... ........ 74

Trigonometric EXpressions . ... ... .. . i 78



Expressions Involving Complex Variables . . ......... .. ... .. .. ... .. .. .. ... ..... 80

Logical and Piecewise Functions ... ......... ... ... ... ... ... .. . . 81
Simplification . ... .. e 83
Using AssUumpPptions . . ... ... . e 85

Manipulating Equations and Inequalities

EqQUations . ... .. e 91
Solving Equations . ... ... . . 93
The Representation of Equationsand Solutions .. . .............................. 98
Equationsin One Variable ... ... ... ... . ... . . . . e 100
Counting and Isolating PolynomialRoots .. .............. ... ... ... ............. 107
Algebraic Numbers . .. ... ... . 110
Simultaneous Equations . . ... ... .. 113
Generic and Non-Generic Solutions . . .. ... ... ... ... ..l 115
Eliminating Variables . . ... ... . . . e 119
Relational and Logical Operators .. ... ... .. ... ... i, 121
Solving Logical Combinations of Equations ... .............. ... ... .. .... ... ...... 123
Inequalities . ... ... . . 124
Equations and InequalitiesoverDomains .. ............. ... ... ... . ... ... ... ... 130
The Representation of Solution Sets ... ....... ... .. ... .. ... ... ... ... ... 138
Quantifiers . ... ... 141
Minimization and Maximization ........ .. ... . .. .. ... ... 145

Linear Algebra

Constructing Matrices .. ... ... .. . . 149
Getting and Setting Piecesof Matrices . ............ ... ... ... ... 151
Scalars, Vectors and Matrices . . ........ ... ... .. . . 153
Operations on Scalars, Vectorsand Matrices ... ......... ... ... ... .. ... ... ....... 154
Multiplying Vectors and Matrices . . ....... ... ... ... ... .. 156
Vector Operations . ... ... .. . e 159
MatrixX INVErSiON . . .. ... 161
Basic Matrix Operations . . ... ... ... . . . . e 164
Solving Linear Systems . . ... ... .. 167
Eigenvalues and Eigenvectors . ... ... ... ... . . . . 172
Advanced Matrix Operations . ... ... ... ... . . . e 176
T OIS OKS . . .ot 178
Sparse Arrays: Linear Algebra . . ... ... .. ... 186

Series, Limits and Residues

Sums and Products . . ... .. ... 189
POWEE SIS . . . ... 191
Making Power Series EXpansions . . ............... ... . 193

The Representation of Power Series . . ....... ... ... ... .. ... . . . i 196



Operations on POWEr Series . . ... ... . e e 197

Composition and Inversion of Power Series . ........... ... ... ... .. i 200
Converting Power Series to Normal Expressions . .. ............................. 201
Solving Equations Involving Power Series . ....... ... ... ... . . ... ... ... 202
Summation of Series .. ... ... 203
Solving Recurrence Equations . .. ... ... ... ... . ... e 205
FInding LiImits . .. ... ... e 208
RESIAUES . . . .. 211
Padé ApproxXimation . ... ... ... ... . . . 211
Calculus
Differentiation . ... ... ... . . . . 214
Total Derivatives . ... ... ... . 216
Derivatives of Unknown Functions .. ... ... ... .. ... .. . .. .. ... i 218
The Representation of Derivatives . .......... ... ... .. ... . . . . . . 219
Defining Derivatives . . ... ... . .. . . 223
Integration ... ... . . e 224
Indefinite Integrals . . ... . . 227
Integrals That Canand CannotBe Done ........ ... ... ... .. ... ... . . i, 230
Definite Integrals .. ... ... . . . e e 234
Integrals over RegiONS . . ... ... .. .. e e 240
Manipulating Integrals in SymbolicForm . ........ ... .. ... ... .. ... .. ... ... ...... 241
Differential EqQuations . ... ... . . . . . e 242
Integral Transforms and Related Operations .................................... 250
Generalized Functions and Related Objects ... .......... ... ... .. ... ... ......... 255

Numerical Operations on Functions

Arithmetic . . ... . 259
Numerical Mathematics in Mathematica .. ...... ... ... ... ... ... ... ......... 261
The Uncertainties of Numerical Mathematics . .............. .. ... ... .......... 262
Introduction to Numerical Sums, Products, andIntegrals ....................... 264
Numerical Integration . ... ... ... ... . . . . . e 265
Numerical Evaluation of Sums andProducts . .. ...... ... ... ... ... .. ............ 269
Numerical Equation Solving .. ... ... .. . .. . . . e 271
Numerical Solution of Polynomial Equations ... ................................. 272
Numerical Root Finding . ........ ... .. . . e 273
Introduction to Numerical Differential Equations . ............................... 275
Numerical Solution of Differential Equations . ................................... 277
Numerical Optimization ... ... ... ... . . . . . . 287
Controlling the Precisionof Results .. ......... ... ... ... ... .. ... ... .. ... ... .. ..., 290
Monitoring and Selecting Algorithms . ........ ... ... .. ... .. ... ... ... L. 292

Functions with Sensitive Dependence on TheirInput............................ 295



Numerical Operations on Data

Basic Statistics . . ... ... . 299
Descriptive Statistics ... ... ... ... .. e 301
Discrete Distributions . . ... .. .. .. 305
Continuous Distributions . . .. ... .. ... .. 309
Partitioning DataintoClusters . .. ... ... ... ... .. . .. ... 316
Using Nearest . . ... ... . 324
Manipulating Numerical Data . ........... ... ... ... .. . . . . . 326
Curve Fitting . ... ... .. e 328
Statistical Model Analysis . .......... ... ... 333
Approximate Functions and Interpolation. ... ... ... .. ... ... .. ... ... ... ... ... 359
Discrete Fourier Transforms . .. ... ... . .. . . . . . . . 365
Convolutions and Correlations . . ... ... . . . . . . . 369
Cellular Automata . . ... ... . e 374

Mathematical Functions

Naming Conventions . . ... ... . . . . i e 385
Genericand NoNgeneriC Cases . . ... ... ... ittt 385
Numerical Functions . . ... . ... . . 387
Piecewise Functions . . ... ... .. .. . . . 388
Pseudorandom Numbers . . ... ... .. . 389
Integer and Number Theoretic Functions . . .......... ... ... ... ... ............ 394
Combinatorial Functions . . ... ... .. . . 413
Elementary Transcendental Functions ... ....... ... ... . ... . ... ... .. ... ... .. ... 419
Functions That Do Not Have Unique Values . ........... ... ... ... .. ... ... 421
Mathematical Constants . . . ... ... .. .. .. . . 424
Orthogonal Polynomials . . ... ... ... . . . . e 425
Special FUNCHIONS . .. ... ... . e e 428
Elliptic Integrals and Elliptic Functions . ... ... ... ... .. ... ... ... ... ... ... ...... 449
Mathieu and Related Functions . .. ........ ... ... .. .. .. . .. 457

Working with Special Functions . . ....... ... ... .. ... .. . . . . ... 458



Numbers

Types of Numbers

Four underlying types of numbers are built into Mathematica.

Integer arbitrary-length exact integer

Rational integer/integer in lowest terms

Real approximate real number, with any specified precision
Complex complex number of the form number + number T

Intrinsic types of numbers in Mathematica.

Rational numbers always consist of a ratio of two integers, reduced to lowest terms.
12344/ 2222
6172

1111

Approximate real numbers are distinguished by the presence of an explicit decimal point.

5456.
5456.

An approximate real number can have any number of digits.
4.54543523454543523453452345234543
4.5454352345454352345345234523454

Complex numbers can have integer or rational components.
4+7/81
7i

4+ —

8

They can also have approximate real number components.

4+5.61

4+5.61
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123 an exact integer

123. an approximate real number

123.0000000000000 an approximate real number with a certain precision

123.+0. I a complex number with approximate real number
components

Several versions of the number 123.

You can distinguish different types of numbers in Mathematica by looking at their heads.
(Although numbers in Mathematica have heads like other expressions, they do not have explicit
elements which you can extract.)

The object 123 is taken to be an exact integer, with head Integer.
Head[123]

Integer

The presence of an explicit decimal point makes Mathematica treat 123. as an approximate
real number, with head Real.

Head[123.]

Real
NumberQ [ x] test whether x is any kind of number
IntegerQ [x] test whether x is an integer
EvenQ [x] test whether x is even
0ddQ [x] test whether x is odd
PrimeQ[x] test whether x is a prime integer
Head [x] ===type test the type of a number

Tests for different types of numbers.

NumberQ [x] tests for any kind of number.
NumberQ[5.6]

True

5. is treated as a Real, so IntegerQ gives False.
IntegerQ[5.]

False
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If you use complex numbers extensively, there is one subtlety you should be aware of. When
you enter a number like 123., Mathematica treats it as an approximate real number, but as-
sumes that its imaginary part is exactly zero. Sometimes you may want to enter approximate
complex numbers with imaginary parts that are zero, but only to a certain precision.

When the imaginary part is the exact integer 0, Mathematica simplifies complex numbers to
real ones.

Head[123 +0I]

Integer

Here the imaginary part is only zero to a certain precision, so Mathematica retains the complex
number form.

Head[123. +0. I]

Complex

The distinction between complex numbers whose imaginary parts are exactly zero, or are only
zero to a certain precision, may seem like a pedantic one. However, when we discuss, for
example, the interpretation of powers and roots of complex numbers in "Functions That Do Not

Have Unique Values", the distinction will become significant.

One way to find out the type of a number in Mathematica is just to pick out its head using
Head [expr]. For many purposes, however, it is better to use functions like Integerg which
explicitly test for particular types. Functions like this are set up to return True if their argument
is manifestly of the required type, and to return False otherwise. As a result, IntegerQ [x] will

give False, unless x has an explicit integer value.

Complex Numbers

You can enter complex numbers in Mathematica just by including the constant 1, equal to v-1.
Make sure that you type a capital 1.

If you are using notebooks, you can also enter I as i by typing Escii Esc (see "Mathematical
Notation in Notebooks: Numerical Calculations"). The form i is normally what is used in output.

Note that an ordinary i means a variable named i, not v -1 .
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This gives the imaginary number result 2.
Sqrt[-4]

21

This gives the ratio of two complex numbers.
(4+31)/(2-1)

1+21i

Here is the numerical value of a complex exponential.
Exp[2+9I] // N

-6.73239 + 3.04517 1

x+I y the complex number x + iy
Re [z] real part

Im[z] imaginary part
Conjugate[z] complex conjugate z* or 7
Abs [z] absolute value |z]

Arg(z] the argument ¢ in |z|e ¢

Complex number operations.

Numeric Quantities

NumberQ [expr] test whether expr is explicitly a number

NumericQ [expr] test whether expr has a numerical value

Testing for numeric quantities.

Pi is a symbol, so Pi + 3 is not explicitly a number.
NumberQ[Pi + 3]

False

It does however have a numerical value.
NumericQ[Pi + 3]

True
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This finds the explicit numerical value of Pi + 3.
N[Pi + 3]
6.14159

Mathematica knows that constants such as pi are numeric quantities. It also knows that stan-
dard mathematical functions such as Log and Sin have numerical values when their arguments

are numerical.

Log[2 + x] contains x, and is therefore not a numeric quantity.
{NumericQ[Log[2]], NumericQ[Log[2 + x]]}

{True, False}

Many functions implicitly use the numerical values of nhumeric quantities.
Min[Exp[2], Log[2], Sqrt[2]]

Log[2]

In general, Mathematica assumes that any function which has the attribute NumericFunction
will yield numerical values when its arguments are numerical. All standard mathematical func-
tions in Mathematica already have this attribute. But when you define your own functions, you
can explicitly set the attribute to tell Mathematica to assume that these functions will have
numerical values when their arguments are numerical.

Digits in Numbers

IntegerDigits [n] a list of the decimal digits in the integer n

IntegerDigits [n,b] the digits of n in base b

IntegerDigits [n,b,len] the list of digits padded on the left with zeros to give total
length len

IntegerLength [n] the number of decimal digits in n

IntegerLength [n,b] the number of base b digits in n

IntegerExponent [n,b] the number of zeros at the end of n in base b

RealDigits [x] a list of the decimal digits in the approximate real number

x, together with the number of digits to the left of the
decimal point
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RealDigits [x,b]
RealDigits [x,b,len]

RealDigits [x,b,len,n]

the digits of x in base b
the first len digits of x in base b
the first len digits starting with the coefficient of b"

FromDigits [list,b]

FromDigits

[x,

[

[
FromDigits [list]

[

[ "string" ]

[

FromDigits [ "string" ,b]

construct a number from its decimal digit sequence
construct a number from its digit sequence in base b
construct an integer from a string of digits

construct an integer from a string of digits in base b

IntegerString [n]
IntegerString [n,b]

a string of the decimal digits in the integer n

a string of the digits of n in base b

Converting between numbers and lists or strings of digits.

Here is the list of base 16 digits for an integer.
IntegerDigits[1234135634, 16]
{4, 9,8, 15, 6, 10, 5, 2}

This gives a list of digits, together with the number of digits that appear to the left of the

decimal point.
RealDigits[123.4567890123456]
{{1, 2, 3, 4,5, 6,7,8,9,0,1, 2,3, 4,5, 6}, 3}

Here is the binary digit sequence for 56, padded with zeros so that it is of total length 8.

IntegerDigits[56, 2, 8]
{0, 0,1,1,1,0,0, 0}

This reconstructs the original number from its binary digit sequence.
FromDigits[%, 2]
56

Here is 56 as a binary string.
IntegerString[56, 2]
111000

This reconstructs the original number again.
FromDigits[%, 2]
56
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b” "“nnnn a number in base b
BaseForm [x,b] print with x in base b
IntegerString [n,b] a string representing n in base b

Numbers in other bases.

When the base is larger than 10, extra digits are represented by letters a-z.

The number 100 101, in base 2 is 37 in base 10.
277100101

37

This prints 37 in base 2.
BaseForm[37, 2]
100101,

This gives the base-2 representation as a string.
IntegerString[37, 2]
100101

Here is a number in base 16.
16"~ ffffaal0
4294945280

You can do computations with numbers in base 16. Here the result is given in base 10.
16"~ fffaa2 + 16" "ff -1

16776 096

This gives the result in base 16.
BaseForm[%, 16]
£££fbalye

You can give approximate real numbers, as well as integers, in other bases.
277101.100101
5.57813
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Here are the first few digits of V2 in octal.
BaseForm[N[Sqrt[2], 30], 8]
1.324047463177167462204262766115467,

This gives an explicit list of the first 15 octal digits.
RealDigits[Sqrt[2], 8, 15]
{{ll 3! 2I 4! 0I 4! 7I 4! 6I 3! 1I 7! 7I ll 6}I l}

This gives 15 octal digits starting with the coefficient of 8719,
RealDigits[Sqrt[2], 8, 15, -10]
({,7,7,1,6,7,4,6,2,2,0,4,2,6,2}, -9}

"Output Formats for Numbers" describes how to print humbers in various formats. If you want
to create your own formats, you will often need to use MantissaExponent tO separate the

pieces of real numbers.

MantissaExponent [x] give a list containing the mantissa and exponent of x

MantissaExponent [x,b] give the mantissa and exponent in base b
Separating the mantissa and exponent of humbers.
This gives a list in which the mantissa and exponent of the number are separated.

MantissaExponent[3.45 x 10" 125]
{0.345, 126}

Exact and Approximate Results

A standard electronic calculator does all your calculations to a particular accuracy, say 10

decimal digits. With Mathematica, however, you can often get exact results.

Mathematica gives an exact result for 2'%°, even though it has 31 decimal digits.
27100
1267 650600228229 401496 703205376
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You can tell Mathematica to give you an approximate numerical result, just as a calculator
would, by ending your input with // N. The N stands for "numerical". It must be a capital letter.

"Special Ways to Input Expressions" will explain what the // means.

This gives an approximate numerical result.
27100 // N

1.26765x10%°

Mathematica can give results in terms of rational numbers.
1/3+2/1
13

21

// N always gives the approximate numerical result.
1/3+42/7//N

0.619048

expr/ /N give an approximate numerical value for expr

Getting numerical approximations.

When you type in an integer like 7, Mathematica assumes that it is exact. If you type in a
number like 4.5, with an explicit decimal point, Mathematica assumes that it is accurate only to

a fixed number of decimal places.

This is taken to be an exact rational number, and reduced to its lowest terms.
452 / 62
226

31

Whenever you give a number with an explicit decimal point, Mathematica produces an approxi-
mate numerical result.

452.3 /62
7.29516
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Here again, the presence of the decimal point makes Mathematica give you an approximate
numerical result.
452. / 62

7.29032

When any number in an arithmetic expression is given with an explicit decimal point, you get an
approximate numerical result for the whole expression.

1.+452/62
8.29032

Numerical Precision

As discussed in "Exact and Approximate Results", Mathematica can handle approximate real
numbers with any number of digits. In general, the precision of an approximate real number is
the effective number of decimal digits in it that are treated as significant for computations. The
accuracy is the effective number of these digits that appear to the right of the decimal point.
Note that to achieve full consistency in the treatment of numbers, precision and accuracy often

have values that do not correspond to integer numbers of digits.

Precision [x] the total number of significant decimal digits in x

Accuracy [x] the number of significant decimal digits to the right of the
decimal point in x

Precision and accuracy of real numbers.

This generates a humber with 30-digit precision.
x = N[Pi~ 10, 30]
93648.0474760830209737166901849

This gives the precision of the number.
Precision[x]

30.

The accuracy is lower since only some of the digits are to the right of the decimal point.

Accuracy [x]

25.0285
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This number has all its digits to the right of the decimal point.
x/10"6
0.0936480474760830209737166901849

Now the accuracy is larger than the precision.
{Precision[%], Accuracy[%]}

{30., 31.0285}

An approximate real number always has some uncertainty in its value, associated with digits
beyond those known. One can think of precision as providing a measure of the relative size of
this uncertainty. Accuracy gives a measure of the absolute size of the uncertainty.

Mathematica is set up so that if a number x has uncertainty §, then its true value can lie any-
where in an interval of size § from x-4/2 to x+6/2. An approximate number with accuracy « is
defined to have uncertainty 107, while a nonzero approximate number with precision p is

defined to have uncertainty |x|107%.

Precision [x] —log,,(6/ | x|)

Accuracy [x] —log,,(9)
Definitions of precision and accuracy in terms of uncertainty.

Adding or subtracting a quantity smaller than the uncertainty has no visible effect.
{x-10"-26, x, x+10"-26}

{93648.0474760830209737166901849,
93648.0474760830209737166901849, 93648.0474760830209737166901849}

N [expr,n] evaluate expr to n-digit precision using arbitrary-precision
numbers
N [expr] evaluate expr numerically using machine-precision numbers

Numerical evaluation with arbitrary-precision and machine-precision numbers.

Mathematica distinguishes two kinds of approximate real numbers: arbitrary-precision num-
bers, and machine-precision numbers or machine numbers. Arbitrary-precision numbers can
contain any number of digits, and maintain information on their precision. Machine numbers, on
the other hand, always contain the same number of digits, and maintain no information on their

precision.
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Here is a machine-number approximation to 7.
N[Pi]
3.14159

These are both arbitrary-precision numbers.
{N[Pi, 4], N[Pi, 20]}
{3.142, 3.1415926535897932385}

As discussed in more detail below, machine humbers work by making direct use of the numeri-
cal capabilities of your underlying computer system. As a result, computations with them can
often be done more quickly. They are however much less flexible than arbitrary-precision num-
bers, and difficult numerical analysis can be needed to determine whether results obtained with

them are correct.

MachinePrecision the precision specification used to indicate machine
numbers
$MachinePrecision the effective precision for machine numbers on your

computer system

MachineNumberQ [x] test whether x is a machine nhumber

Machine numbers.

This returns the symbol MachinePrecision to indicate a machine number.
Precision[N[Pi]]

MachinePrecision

On this computer, machine numbers have slightly less than 16 decimal digits.
$MachinePrecision

15.9546

When you enter an approximate real number, Mathematica has to decide whether to treat it as
a machine number or an arbitrary-precision number. Unless you specify otherwise, if you give
less than $MachinePrecision digits, Mathematica will treat the number as machine precision,

and if you give more digits, it will treat the number as arbitrary precision.
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123.4 a machine-precision humber

123.45678901234567890 an arbitrary-precision number on some computer systems

123.45678901234567890" a machine-precision number on all computer systems

123.456°200 an arbitrary-precision number with 200 digits of precision

123.456 7200 an arbitrary-precision number with 200 digits of accuracy

1.234*"6 a machine-precision number in scientific notation
(1.234x10°)

1.2347200*"6 a number in scientific notation with 200 digits of precision

277101.111°200 a number in base 2 with 200 binary digits of precision

277101.111°200*"6 a number in base-2 scientific notation (101.111,x28)

Input forms for numbers.

When Mathematica prints out numbers, it usually tries to give them in a form that will be as
easy as possible to read. But if you want to take numbers that are printed out by Mathematica,
and then later use them as input to Mathematica, you need to make sure that no information

gets lost.

In standard output form, Mathematica prints a number like this to six digits.
N[Pi]

3.14159

In input form, Mathematica prints all the digits it knows.
InputForm[%]

3.141592653589793

Here is an arbitrary-precision number in standard output form.
N[Pi, 20]
3.1415926535897932385

In input form, Mathematica explicitly indicates the precision of the number, and gives extra
digits to make sure the number can be reconstructed correctly.

InputForm[%]
3.1415926535897932384626433832795028842720.
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This makes Mathematica not explicitly indicate precision.
InputForm[%, NumberMarks -> False]

3.14159265358979323846

InputForm [expr, NumberMarks ->True }

use -~ marks in all approximate numbers
InputForm [expr, NumberMarks ->Automatic ]

use "~ only in arbitrary-precision numbers
InputForm [expr, NumberMarks ->False }

never use - marks

Controlling printing of numbers.

The default setting for the NumberMarks option, both in InputForm and in functions such as
ToString and OpenWrite is given by the value of $NumberMarks. By resetting $NumberMarks,
therefore, you can globally change the way that numbers are printed in InputForm.

This makes Mathematica by default always include number marks in input form.
$SNumberMarks = True

True

Even a machine-precision humber is now printed with an explicit number mark.
InputForm[N[Pi]]
3.141592653589793"

Even with no number marks, InputForm still uses » * for scientific notation.
InputForm[N[Exp[600], 20], NumberMarks -> False]

3.7730203009299398234%*"260

In doing numerical computations, it is inevitable that you will sometimes end up with results
that are less precise than you want. Particularly when you get numerical results that are very
close to zero, you may well want to assume that the results should be exactly zero. The func-
tion chop allows you to replace approximate real humbers that are close to zero by the exact

integer 0.
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Chop [expr] replace all approximate real numbers in expr with magni-
tude less than 107'° by 0

Chop [expr,dx] replace numbers with magnitude less than dx by 0

Removing numbers close to zero.

This computation gives a small imaginary part.
Exp[N[2 PiI]]

1.-2.44921x107%¢ 1

You can get rid of the imaginary part using Chop.
Chop [%]
1.

Arbitrary-Precision Calculations

When you use // N to get a numerical result, Mathematica does what a standard calculator
would do: it gives you a result to a fixed number of significant figures. You can also tell Mathe-
matica exactly how many significant figures to keep in a particular calculation. This allows you

to get numerical results in Mathematica to any degree of precision.

expr/ /N or N [expr] approximate numerical value of expr

N [expr,n] numerical value of expr calculated with r-digit precision

Numerical evaluation functions.

This gives the numerical value of 7 to a fixed number of significant digits. Typing N[Pi] is
exactly equivalent to Pi // N.
N[Pi]

3.14159

This gives & to 40 digits.
N[Pi, 40]
3.141592653589793238462643383279502884197
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Here is V7 to 30 digits.
N[Sqrt[7], 30]
2.64575131106459059050161575364

Doing any kind of numerical calculation can introduce small roundoff errors into your results.
When you increase the numerical precision, these errors typically become correspondingly
smaller. Making sure that you get the same answer when you increase numerical precision is
often a good way to check your results.

The quantity ¢" V!9 turns out to be very close to an integer. To check that the result is not, in
fact, an integer, you have to use sufficient numerical precision.

N[Exp[Pi Sqrt[163]], 40]

2.625374126407687439999999999992500725972x10%7

Arbitrary-Precision Numbers

When you do calculations with arbitrary-precision numbers, Mathematica keeps track of preci-
sion at all points. In general, Mathematica tries to give you results which have the highest

possible precision, given the precision of the input you provided.

Mathematica treats arbitrary-precision numbers as representing the values of quantities where
a certain number of digits are known, and the rest are unknown. In general, an arbitrary-
precision number x is taken to have pPrecision[x] digits which are known exactly, followed by

an infinite number of digits which are completely unknown.

This computes 7 to 10-digit precision.
N[Pi, 10]
3.141592654

After a certain point, all digits are indeterminate.
RealDigits[%, 10, 13]

{{3, 1, 4,1,5,9, 2, 6,5, 3, Indeterminate, Indeterminate, Indeterminate}, 1}

When you do a computation, Mathematica keeps track of which digits in your result could be
affected by unknown digits in your input. It sets the precision of your result so that no affected
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digits are ever included. This procedure ensures that all digits returned by Mathematica are

correct, whatever the values of the unknown digits may be.

This evaluates I'(1/7) to 30-digit precision.
N[Gamma[l /7], 30]
6.54806294024782443771409334943

The result has a precision of exactly 30 digits.
Precision[%]

30.

If you give input only to a few digits of precision, Mathematica cannot give you such high-
precision output.

N[Gamma[0.142], 30]

6.58965

If you want Mathematica to assume that the argument is exactly 142 / 1000, then you have to
say so explicitly.

N[Gamma[142 / 1000], 30]

6.58964729492039788328481917496

In many computations, the precision of the results you get progressively degrades as a result of
"roundoff error". A typical case of this occurs if you subtract two numbers that are close
together. The result you get depends on high-order digits in each number, and typically has far

fewer digits of precision than either of the original numbers.

Both input numbers have a precision of around 20 digits, but the result has much lower preci-

sion.
1.11111111111111111111-1.11111111111111111000

1.1x10718

Adding extra digits in one number but not the other is not sufficient to allow extra digits to be
found in the result.
1.11111111111111111111345-1.11111111111111111000

1.1x10718

The precision of the output from a function can depend in a complicated way on the precision of

the input. Functions that vary rapidly typically give less precise output, since the variation of
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the output associated with uncertainties in the input is larger. Functions that are close to con-

stants can actually give output that is more precise than their input.

Here is a case where the output is less precise than the input.
Sin[111111111.0000000000000000]

-0.2975351033349432

Here is ¢*0 evaluated to 20-digit precision.
N[Exp[-40], 20]

4.2483542552915889953x10 18

The result you get by adding the exact integer 1 has a higher precision.

1+%
1.0000000000000000042483542552915889953

It is worth realizing that different ways of doing the same calculation can end up giving you
results with very different precisions. Typically, if you once lose precision in a calculation, it is
essentially impossible to regain it; in losing precision, you are effectively losing information

about your result.

Here is a 40-digit number that is close to 1.
x =N[1-10"-30, 40]
0.9999999999999999999999999999990000000000

Adding 1 to it gives another 40-digit number.
1+x

1.999999999999999999999999999999000000000

The original precision has been maintained.
Precision[%]

40.301

This way of computing 1 + x loses precision.
(x*2-1) / (x-1)

2.000000000
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The result obtained in this way has quite low precision.
Precision[%]

9.69897

The fact that different ways of doing the same calculation can give you different numerical
answers means, among other things, that comparisons between approximate real numbers
must be treated with care. In testing whether two real numbers are "equal", Mathematica
effectively finds their difference, and tests whether the result is "consistent with zero" to the

precision given.

These numbers are equal to the precision given.
3 == 3.000000000000000000

True

The internal algorithms that Mathematica uses to evaluate mathematical functions are set up to
maintain as much precision as possible. In most cases, built-in Mathematica functions will give
you results that have as much precision as can be justified on the basis of your input. In some
cases, however, it is simply impractical to do this, and Mathematica will give you results that
have lower precision. If you give higher-precision input, Mathematica will use higher precision

in its internal calculations, and you will usually be able to get a higher-precision result.

N [expr] evaluate expr numerically to machine precision
N [expr,n] evaluate expr numerically trying to get a result with = digits
of precision

Numerical evaluation.

If you start with an expression that contains only integers and other exact numeric quantities,
then N[expr, n] will in almost all cases succeed in giving you a result to » digits of precision. You
should realize, however, that to do this Mathematica sometimes has to perform internal interme-

diate calculations to much higher precision.

The global variable $MaxExtraPrecision specifies how many additional digits should be allowed

in such intermediate calculations.

variable default value
$MaxExtraPrecision 50 maximum additional precision to use

Controlling precision in intermediate calculations.
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Mathematica automatically increases the precision that it uses internally in order to get the
correct answer here.

N[Sin[10"40], 30]

-0.569633400953636327308034181574

Using the default setting $SMaxExtraPrecision = 50, Mathematica cannot get the correct
answer here.
N[Sin[10~100], 30]

>

This tells Mathematica that it can use more digits in its internal calculations.
$MaxExtraPrecision = 200

200

Now it gets the correct answer.
N[Sin[107100], 30]
-0.372376123661276688262086695553

This resets $MaxExtraPrecision to its default value.
$MaxExtraPrecision = 50

50

Even when you are doing computations that give exact results, Mathematica still occasionally
uses approximate numbers for some of its internal calculations, so that the value of

$MaxExtraPrecision can thus have an effect.

Mathematica works this out using bounds from approximate numbers.
Sin[Exp[100]] > O

True

With the default value of $SMaxExtraPrecision, Mathematica cannot work this out.
Sin[Exp[200]] > O

>

Sin[ezoo} >0



Mathematics and Algorithms | 21

Temporarily resetting $SMaxExtraPrecision allows Mathematica to get the result.
Block[ {$MaxExtraPrecision = 100}, Sin[Exp[200]] > O]

False

In doing calculations that degrade precision, it is possible to end up with numbers that have no
significant digits at all. But even in such cases, Mathematica still maintains information on the
accuracy of the numbers. Given a number with no significant digits, but accuracy a, Mathemat-
ica can then still tell that the actual value of the number must be in the range

{(-107", +10°"} / 2. Mathematica by default prints such numbers in the form 0. x 10°.

Here is a number with 20-digit precision.
x = N[Exp[50], 20]

5.1847055285870724641x 102}

Here there are no significant digits left.
Sin[x] / x

0.x1022

But Mathematica still keeps track of the accuracy of the result.
Accuracy[%]

21.7147

Adding the result to an exact 1 gives a number with quite high precision.
1+ %%
1.000000000000000000000

One subtlety in characterizing numbers by their precision is that any number that is consistent
with zero must be treated as having zero precision. The reason for this is that such a number

has no digits that can be recognized as significant, since all its known digits are just zero.

This gives a number whose value is consistent with zero.
d = N[Pi, 20] - Pi

0.x107°2°
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The number has no recognizable significant digits of precision.
Precision[d]

0.

But it still has a definite accuracy, that characterizes the uncertainty in it.

Accuracy[d]

19.5029

If you do computations whose results are likely to be near zero, it can be convenient to specify

the accuracy, rather than the precision, that you want to get.

N [expr,p] evaluate expr to precision p
N[expr,{p,a}] evaluate expr to at most precision p and accuracy a
N [expr, {Infinity ,aH evaluate expr to any precision but to accuracy a

Specifying accuracy as well as precision.

Here is a symbolic expression.
u = ArcTan[l / 3] - ArcCot[3]
1

-ArcCot (3] + ArcTan { 7}
3

This shows that the expression is equivalent to zero.
FullSimplify[u]
0

N cannot guarantee to get a result to precision 20.
N[u, 20]
N::meprec:

1
Internal precision limit $MaxExtraPrecision = 50." reached while evaluating —ArcCot|3|-ArcTan| 7‘. >
3
0.x1077*
But it can get a result to accuracy 20.

N[u, {Infinity, 20}]

0.x1072°
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When Mathematica works out the potential effect of unknown digits in arbitrary-precision num-
bers, it assumes by default that these digits are completely independent in different numbers.
While this assumption will never yield too high a precision in a result, it may lead to unneces-

sary loss of precision.

In particular, if two numbers are generated in the same way in a computation, some of their
unknown digits may be equal. Then, when these numbers are, for example, subtracted, the
unknown digits may cancel. By assuming that the unknown digits are always independent,

however, Mathematica will miss such cancellations.

Here is a number computed to 20-digit precision.
d = N[3"-30, 20]

4.8569357496188611379x10 13

The quantity 1 + d has about 34-digit precision.
Precision[1l +d]

34.3136

This quantity has lower precision, since Mathematica assumes that the unknown digits in each
number d are independent.
Precision[ (1 +d) -d]

34.0126

Numerical algorithms sometimes rely on cancellations between unknown digits in different
numbers yielding results of higher precision. If you can be sure that certain unknown digits will
eventually cancel, then you can explicitly introduce fixed digits in place of the unknown ones.
You can carry these fixed digits through your computation, then let them cancel, and get a

result of higher precision.

SetPrecision [x,n] create a number with n decimal digits of precision, padding
with base-2 zeros if necessary

SetAccuracy [x,n] create a number with n decimal digits of accuracy

Functions for modifying precision and accuracy.

This introduces 10 more digits in d.

d = SetPrecision[d, 30]

4.85693574961886113790624266497 x 107 1°
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The digits that were added cancel out here.
(L+d) -d
1.00000000000000000000000000000000000000000000

The precision of the result is now about 44 digits, rather than 34.
Precision([%]

44.0126

SetPrecision works by adding digits which are zero in base 2. Sometimes, Mathematica stores
slightly more digits in an arbitrary-precision number than it displays, and in such cases,

SetPrecision will use these extra digits before introducing zeros.

This creates a number with a precision of 40 decimal digits. The extra digits come from conver-
sion to base 10.

SetPrecision[0.400000000000000, 40]
0.4000000000000000222044604925031308084726

variable default value
$MaxPrecision Infinity maximum total precision to be used
SMinPrecision 0 minimum precision to be used

Global precision-control parameters.

By making the global assignment $MinPrecision =#n, you can effectively apply
SetPrecision [expr, n] at every step in a computation. This means that even when the number
of correct digits in an arbitrary-precision number drops below n, the number will always be

padded to have » digits.

If you set $MaxPrecision =n as well as $MinPrecision = n, then you can force all arbitrary-
precision numbers to have a fixed precision of » digits. In effect, what this does is to make
Mathematica treat arbitrary-precision numbers in much the same way as it treats machine

numbers—but with more digits of precision.

Fixed-precision computation can make some calculations more efficient, but without careful

analysis you can never be sure how many digits are correct in the results you get.
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Here is a small number with 20-digit precision.
k = N[Exp[-60], 20]

8.7565107626965203385x 10727

With Mathematica's usual arithmetic, this works fine.

Evaluate[l +k] -1

8.7565107626965203385x 10727

This tells Mathematica to use fixed-precision arithmetic.
$MinPrecision = $MaxPrecision = 20

20

The first few digits are correct, but the rest are wrong.
Evaluate[l +k] -1

8.7565107626963908935x 10727

Machine-Precision Numbers

Whenever machine-precision numbers appear in a calculation, the whole calculation is typically

done in machine precision. Mathematica will then give machine-precision numbers as the result.

Whenever the input contains any machine-precision nhumbers, Mathematica does the computa-
tion to machine precision.
1.4444444444444444444°5.17

8.13382

Zeta[5.6] yields a machine-precision result, so the N is irrelevant.
N[Zeta[5.6], 30]
1.02338

This gives a higher-precision result.
N[Zeta[56 / 10], 30]
1.02337547922702991086041788103
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When you do calculations with arbitrary-precision numbers, as discussed in "Arbitrary-Precision
Numbers", Mathematica always keeps track of the precision of your results, and gives only
those digits which are known to be correct, given the precision of your input. When you do
calculations with machine-precision numbers, however, Mathematica always gives you a
machine-precision result, whether or not all the digits in the result can, in fact, be determined

to be correct on the basis of your input.

This subtracts two machine-precision numbers.
diff =1.11111111-1.11111000

1.11x10°°

The result is taken to have machine precision.
Precision[diff]

MachinePrecision

Here are all the digits in the result.
InputForm[diff]
1.1099999999153454™ *"-6

The fact that you can get spurious digits in machine-precision numerical calculations with Mathe-
matica is in many respects quite unsatisfactory. The ultimate reason, however, that Mathemat-

ica uses fixed precision for these calculations is a matter of computational efficiency.

Mathematica is usually set up to insulate you as much as possible from the details of the com-
puter system you are using. In dealing with machine-precision nhumbers, you would lose too

much, however, if Mathematica did not make use of some specific features of your computer.

The important point is that almost all computers have special hardware or microcode for doing
floating-point calculations to a particular fixed precision. Mathematica makes use of these

features when doing machine-precision numerical calculations.

The typical arrangement is that all machine-precision numbers in Mathematica are represented
as "double-precision floating-point numbers" in the underlying computer system. On most
current computers, such numbers contain a total of 64 binary bits, typically yielding 16 decimal

digits of mantissa.
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The main advantage of using the built-in floating-point capabilities of your computer is speed.
Arbitrary-precision numerical calculations, which do not make such direct use of these capabili-

ties, are usually many times slower than machine-precision calculations.

There are several disadvantages of using built-in floating-point capabilities. One already
mentioned is that it forces all numbers to have a fixed precision, independent of what precision
can be justified for them.

A second disadvantage is that the treatment of machine-precision numbers can vary slightly
from one computer system to another. In working with machine-precision numbers, Mathemat-
ica is at the mercy of the floating-point arithmetic system of each particular computer. If float-
ing-point arithmetic is done differently on two computers, you may get slightly different results

for machine-precision Mathematica calculations on those computers.

$MachinePrecision the number of decimal digits of precision

$MachineEpsilon the minimum positive machine-precision nhumber which can
be added to 1.0 to give a result distinguishable from 1.0

$MaxMachineNumber the maximum machine-precision humber

$SMinMachineNumber the minimum positive machine-precision number

$MaxNumber the maximum magnitude of an arbitrary-precision number

$MinNumber the minimum magnitude of a positive arbitrary-precision
number

Properties of numbers on a particular computer system.

Since machine-precision numbers on any particular computer system are represented by a
definite number of binary bits, numbers which are too close together will have the same bit
pattern, and so cannot be distinguished. The parameter $MachineEpsilon gives the distance

between 1.0 and the closest number which has a distinct binary representation.

This gives the value of $SMachineEpsilon for the computer system on which these examples
are run.

$MachineEpsilon

2.22045x1071°

Although this prints as 1., Mathematica knows that the result is larger than 1.
1. + $MachineEpsilon

1.



28 | Mathematics and Algorithms

InputForm reveals that the result is not exactly 1.
% // InputForm
1.0000000000000002

Subtracting 1 gives $MachineEpsilon.
%-1.

2.22045x1071°

This prints as 1. also.
1. + $MachineEpsilon / 2
1.

In this case, however, the result is not distinguished from 1. to machine precision.
% // InputForm
1.

Subtracting 1 from the result yields 0.
%-1.
0.

Machine numbers have not only limited precision, but also limited magnitude. If you generate a
number which lies outside the range specified by $MinMachineNumber and $MaxMachineNumber,
Mathematica will automatically convert the number to arbitrary-precision form.

This is the maximum machine-precision humber which can be handled on the computer system
used for this example.
$MaxMachineNumber

1.79769x 10308

Mathematica automatically converts any result larger than $MaxMachineNumber to arbitrary
precision.
2 $MaxMachineNumber

3.595386269724631x10%%8
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Here is another computation whose result is outside the range of machine-precision numbers.
Exp[1000. ]

1.970071114017 x 10434

Interval Arithmetic

Interval [ {min,max} ] the interval from min to max

Interval [ {min|,max,}, {min, ,max,},...]

the union of intervals from min; to max;, min, to max,, ...

Representations of real intervals.

This represents all numbers between -2 and +5.
Interval[{-2, 5}]

Interval[{-2, 5}]

The square of any number between -2 and +5 is always between 0 and 25.
Interval[{-2, 5}]"2

Interval[{0, 25}]

Taking the reciprocal gives two distinct intervals.
1/ Interval[{-2, 5}]
1 1

tnterval|{-w, -~ }, {=, ]|

2 5

Abs folds the intervals back together again.
Abs[%]
1

Interval Hg , ooH

You can use intervals in many kinds of functions.
Solve[3 x + 2 == Interval[{-2, 5}], x]

4

{{o- mnservan {2 1] }]
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Some functions automatically generate intervals.
Limit[Sin[1l/ x], x -> 0]

Interval([{-1, 1}]

IntervalUnion [interval, ,interval,, ...]

find the union of several intervals
IntervalIntersection [interval, ,interval,, ...]

find the intersection of several intervals
IntervalMemberQ [interval , x] test whether the point x lies within an interval
IntervalMemberQ [interval, ,interval, ]

test whether interval, lies completely within interval,

Operations on intervals.

This finds the overlap of the two intervals.
IntervalIntersection[Interval[{3, 7}], Interval[{-2, 5}]]

Interval[{3, 5}]

You can use Max and Min to find the end points of intervals.
Max [%]
5

This finds out which of a list of intervals contains the point 7.
IntervalMemberQ[Table[Interval [{i, i +1}], {i, 1, 20, 3}], 7]

{False, False, True, False, False, False, False}

You can use intervals not only with exact quantities but also with approximate numbers. Even
with machine-precision humbers, Mathematica always tries to do rounding in such a way as to

preserve the validity of results.

This shows explicitly the interval treated by Mathematica as the machine-precision number 0.
Interval[O0.]

Intervall[{-2.22507x103%, 2.22507x10 3%} ]
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This shows the corresponding interval around 100 ., shifted back to zero.
Interval[100.] - 100

Interval] {-1.42109x107**, 1.42109x 10’“}]

The same kind of thing works with numbers of any precision.
Interval [N[Pi, 50]] - Pi

Interval[{-0.x107%, 0.x107°%}]

With ordinary machine-precision arithmetic, this computation gives an incorrect result.
Sin[N[Pi]]

1.22461x10°°

The interval generated here, however, includes the correct value of 0.
Sin[Interval [N[Pi]]]

Interval[{-3.21629x107'%, 5.6655x10 '°}]

Indeterminate and Infinite Results

If you type in an expression like 0 / 0, Mathematica prints a message, and returns the result
Indeterminate.

0/0
>

>

Indeterminate

An expression like 0 / 0 is an example of an indeterminate numerical result. If you type in 0/ 0,
there is no way for Mathematica to know what answer you want. If you got 0 / 0 by taking the
limit of x/x as x— 0, then you might want the answer 1. On the other hand, if you got 0/ 0
instead as the limit of 2x/x, then you probably want the answer 2. The expression 0 /0 on its
own does not contain enough information to choose between these and other cases. As a result,

its value must be considered indeterminate.

Whenever an indeterminate result is produced in an arithmetic computation, Mathematica

prints a warning message, and then returns Indeterminate as the result of the computation. If
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you ever try to use Indeterminate in an arithmetic computation, you always get the result
Indeterminate. A single indeterminate expression effectively "poisons" any arithmetic computa-
tion. (The symbol Indeterminate plays a role in Mathematica similar to the "not a number"
object in the IEEE Floating Point Standard.)

The usual laws of arithmetic simplification are suspended in the case of Indeterminate.
Indeterminate - Indeterminate

Indeterminate

Indeterminate "poisons" any arithmetic computation, and leads to an indeterminate result.
2 Indeterminate - 7

Indeterminate

When you do arithmetic computations inside Mathematica programs, it is often important to be
able to tell whether indeterminate results were generated in the computations. You can do this
by using the function check discussed in "Messages" to test whether any warning messages

associated with indeterminate results were produced.

You can use Check inside a program to test whether warning messages are generated in a
computation.
Check[(7 -7) / (8 - 8), meaningless]

>

>

meaningless
Indeterminate an indeterminate numerical result

Infinity a positive infinite quantity

-Infinity a negative infinite quantity (DirectedInfinity[-1])
DirectedInfinity [r] an infinite quantity with complex direction r
ComplexInfinity an infinite quantity with an undetermined direction
DirectedInfinity [] equivalent to ComplexInfinity

Indeterminate and infinite quantities.

There are many situations where it is convenient to be able to do calculations with infinite

quantities. The symbol Infinity in Mathematica represents a positive infinite quantity. You can
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use it to specify such things as limits of sums and integrals. You can also do some arithmetic

calculations with it.

Here is an integral with an infinite limit.
Integrate[l/x"3, {x, 1, Infinity}]

1

2

Mathematica knows that 1/c0 =0.
1/ Infinity
0

If you try to find the difference between two infinite quantities, you get an indeterminate result.

Infinity - Infinity
>

Indeterminate

There are a number of subtle points that arise in handling infinite quantities. One of them
concerns the "direction" of an infinite quantity. When you do an infinite integral, you typically
think of performing the integration along a path in the complex plane that goes to infinity in
some direction. In this case, it is important to distinguish different versions of infinity that
correspond to different directions in the complex plane. +o~ and -« are two examples, but for

some purposes one also needs i« and so on.

In Mathematica, infinite quantities can have a "direction", specified by a complex number.
When you type in the symbol Infinity, representing a positive infinite quantity, this is con-
verted internally to the form DirectedInfinity[1], which represents an infinite quantity in the
+1 direction. Similarly, -Infinity becomes DirectedInfinity[-1], and I Infinity becomes
DirectedInfinity [I]. Although the DirectedInfinity form is always used internally, the

standard output format for DirectedInfinity [r] iSr Infinity.

Infinity is converted internally to DirectedInfinity [1].
Infinity // FullForm

DirectedInfinity([1]

Although the notion of a "directed infinity" is often useful, it is not always available. If you type

in 1 /0, you get an infinite result, but there is no way to determine the "direction" of the infinity
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Mathematica represents the result of 1/0 as DirectedInfinity []. In standard output

form, this undirected infinity is printed out as ComplexInfinity.

1 / 0 gives an undirected form of infinity.
1/0

>

ComplexInfinity

Controlling Numerical Evaluation

NHoldAall prevent any arguments of a function from being affected
by N

NHoldFirst prevent the first argument from being affected

NHoldRest prevent all but the first argument from being affected

Attributes for controlling numerical evaluation.

Usually N goes inside functions and gets applied to each of their arguments.
N[£[2/3, Pi]]
£[0.666667, 3.14159]

This tells Mathematica not to apply N to the first argument of £.
SetAttributes[f, NHoldFirst]

Now the first argument of £ is left in its exact form.
N[£[2/3, Pi]]

2
f|—, 3.14159
3
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Algebraic Calculations

Symbolic Computation

One of the important features of Mathematica is that it can do symbolic, as well as numerical

calculations. This means that it can handle algebraic formulas as well as humbers.
Here is a typical numerical computation.

3+62-1
64

This is a symbolic computation.

3x-x+2

2+2x
Numerical computation 62+3-1—64
Symbolic computation 3x+2x—-x+2—>2

Numerical and symbolic computations.

You can type any algebraic expression into Mathematica.

-1+2x+x"3

“1+2x+%°

Mathematica automatically carries out basic algebraic simplifications. Here it combines x? and
-4 x? to get -3 x2.

x"2+x-4%x"2

x-3x2

You can type in any algebraic expression, using the operators listed in "Arithmetic". You can
use spaces to denote multiplication. Be careful not to forget the space in xy. If you type in xy
with no space, Mathematica will interpret this as a single symbol, with the name xy, not as a
product of the two symbols x and y.
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Mathematica rearranges and combines terms using the standard rules of algebra.
Xy+2x"2y+y*2x"2-2yx

_xy+2x%y+x%y?

Here is another algebraic expression.
(x+2y+1) (x-2)"2

(-2+x)2 (1+x+2y)

The function Expand multiplies out products and powers.
Expand [%]

4—3x2+x3+8y—8xy+2x2y

Factor does essentially the inverse of Expand.
Factor[%]

(-2+x)2 (1+x+2Yy)

When you type in more complicated expressions, it is important that you put parentheses in the
right places. Thus, for example, you have to give the expression x*? in the form x* (4 y). If you
leave out the parentheses, you get x*y instead. It never hurts to put in too many parentheses,
but to find out exactly when you need to use parentheses, look at "Operator Input Forms".

Here is a more complicated formula, requiring several parentheses.
Sqrt[2] /9801 (4n) ! (1103 +26390n) / (n!~4396" (4n))

1
—-8n

22 °7997274" (1103 +26390n) (4n) !

(n1)*

When you type in an expression, Mathematica automatically applies its large repertoire of rules
for transforming expressions. These rules include the standard rules of algebra, such as x-x=0,

together with much more sophisticated rules involving higher mathematical functions.

4
Mathematica uses standard rules of algebra to replace (\/ 1+x ) by (1 + x)z.
Sqrt[l+x] "4

(1+x)2
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Mathematica knows no rules for this expression, so it leaves the expression in the original form
you gave.
Log[l + Cos[x]]

Log[l + Cos[x]]

The notion of transformation rules is a very general one. In fact, you can think of the whole of
Mathematica as simply a system for applying a collection of transformation rules to many
different kinds of expressions.

The general principle that Mathematica follows is simple to state. It takes any expression you
input, and gets results by applying a succession of transformation rules, stopping when it

knows no more transformation rules that can be applied.

m Take any expression, and apply transformation rules until the result no longer changes.

The fundamental principle of Mathematica.

Values for Symbols

When Mathematica transforms an expression such as x + x into 2 x, it is treating the variable x
in a purely symbolic or formal fashion. In such cases, x is a symbol which can stand for any

expression.

Often, however, you need to replace a symbol like x with a definite "value". Sometimes this

value will be a number; often it will be another expression.

To take an expression such as 1 + 2 x and replace the symbol x that appears in it with a definite
value, you can create a Mathematica transformation rule, and then apply this rule to the expres-
sion. To replace x with the value 3, you would create the transformation rule x -> 3. You must
type -> as a pair of characters, with no space in between. You can think of x -> 3 as being a

rule in which "x goes to 3".

To apply a transformation rule to a particular Mathematica expression, you type expr /. rule. The

"replacement operator" /. is typed as a pair of characters, with no space in between.

This uses the transformation rule x -> 3 in the expression 1 + 2 x.
1+2x/.x->3
7
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You can replace x with any expression. Here every occurrence of x is replaced by 2 - y.

l+x+x"2/.x->2-y

3+ (2-y)° -y
Here is a transformation rule. Mathematica treats it like any other symbolic expression.

X->3+y

X->3+y

This applies the transformation rule on the previous line to the expression x*2 - 9.

x"2-9/.%

“9+ (3+y)2
expr/ . x—>value replace x by value in the expression expr
expr/ . {x->xval, y->yval} perform several replacements

Replacing symbols by values in expressions.

You can apply rules together by putting the rules in a list.
(x+y) (x-y)"2/. {x->3,y->1-a}

(4-a) (2+a)?

The replacement operator /. allows you to apply transformation rules to a particular expres-
sion. Sometimes, however, you will want to define transformation rules that should a/lways be
applied. For example, you might want to replace x with 3 whenever x occurs.

As discussed in "Defining Variables", you can do this by assigning the value 3 to x using x = 3.
Once you have made the assignment x =3, x will always be replaced by 3, whenever it

appears.

This assigns the value 3 to x.
x =3

3

Now x will automatically be replaced by 3 wherever it appears.
x"2-1
8
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This assigns the expression 1 + a to be the value of x.
x=1+a

l+a

Now x is replaced by 1 + a.
x"2-1

“1+ (1+a)?

You can define the value of a symbol to be any expression, not just a number. You should
realize that once you have given such a definition, the definition will continue to be used when-
ever the symbol appears, until you explicitly change or remove the definition. For most people,
forgetting to remove values you have assigned to symbols is the single most common source of
mistakes in using Mathematica.

x=value define a value for x which will always be used

F=0 remove any value defined for x

Assigning values to symbols.

The symbol x still has the value you assigned to it.
x+5-2x

6+a-2(1+a)

This removes the value you assigned to x.

X=.

Now x has no value defined, so it can be used as a purely symbolic variable.
x+5-2x

5-x

A symbol such as x can serve many different purposes in Mathematica, and in fact, much of the
flexibility of Mathematica comes from being able to mix these purposes at will. However, you
need to keep some of the different uses of x straight in order to avoid making mistakes. The
most important distinction is between the use of x as a name for another expression, and as a
symbolic variable that stands only for itself.
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Traditional programming languages that do not support symbolic computation allow variables to
be used only as names for objects, typically humbers, that have been assigned as values for
them. In Mathematica, however, x can also be treated as a purely formal variable, to which
various transformation rules can be applied. Of course, if you explicitly give a definition, such as

x = 3, then x will always be replaced by 3, and can no longer serve as a formal variable.

You should understand that explicit definitions such as x = 3 have a global effect. On the other
hand, a replacement such as expr /. x -> 3 affects only the specific expression expr. It is usually
much easier to keep things straight if you avoid using explicit definitions except when abso-
lutely necessary.

You can always mix replacements with assignments. With assignments, you can give names to
expressions in which you want to do replacements, or to rules that you want to use to do the
replacements.

This assigns a value to the symbol t.
t=1+x"2

1+ x?

This finds the value of t, and then replaces x by 2 in it.
t/.x->2
5

This finds the value of t for a different value of x.
t/.x->5a

1+ 25a?

This finds the value of t when x is replaced by Pi, and then evaluates the result numerically.
t/.x->Pi//N
10.8696

Transforming Algebraic Expressions

There are often many different ways to write the same algebraic expression. As one example,

the expression (1 +x)*> can be written as 1+2x+x2. Mathematica provides a large collection of
functions for converting between different forms of algebraic expressions.
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Expand [expr] multiply out products and powers, writing the result as a
sum of terms

Factor [expr] write expr as a product of minimal factors

Two common functions for transforming algebraic expressions.

Expand gives the "expanded form", with products and powers multiplied out.
Expand[ (1 +x) "~ 2]

1+2x+x2

Factor recovers the original form.
Factor[%]

(1+x)?

It is easy to generate complicated expressions with Expand.
Expand[ (1 +x+3y) " 4]

1+4x+6x°+4x3+xt112y+36xy+36x2y+12x3y+54y%+108xy?+54x°y%+108y° +108xy>+81y*

Factor often gives you simpler expressions.
Factor[%]

(1+x+3y)*

There are some cases, though, where Factor can give you more complicated expressions.
Factor[x"10-1]

(-1+x) (1+x) (1-x+x"-x>+x%) (1+x+x"+x°+x*)

In this case, Expand gives the "simpler" form.
Expand [%]

-1+ x1°

Simplifying Algebraic Expressions

There are many situations where you want to write a particular algebraic expression in the

simplest possible form. Although it is difficult to know exactly what one means in all cases by
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the "simplest form", a worthwhile practical procedure is to look at many different forms of an
expression, and pick out the one that involves the smallest number of parts.

Simplify [expr] try to find the simplest form of expr by applying various
standard algebraic transformations

FullSimplify [expr] try to find the simplest form by applying a wide range of
transformations

Simplifying algebraic expressions.

Simplify writes x> + 2x + 1 in factored form.
Simplify[x"2+2x+1]

(1+x)2

Simplify leaves x'° — I in expanded form, since for this expression, the factored form is
larger.
Simplify[x~10-1]

-1+ x10

You can often use simplify to "clean up" complicated expressions that you get as the results

of computations.

Here is the integral of 1/(x4 - 1). Integrals are discussed in more detail in "Integration”.
Integrate[l/ (x"4-1), x]
ArcTan[x] 1

1
-—————— + —Log[-1+x] - —Log[l + x]
2 4 4

Differentiating the result from Integrate should give back your original expression. In this
case, as is common, you get a more complicated version of the expression.
D[%, x]

1 1 1

4 (-1 +x) 4 (1+x) 2 (1+x2)

Simplify succeeds in getting back the original, simpler, form of the expression.
Simplify[%]
1

-1+ x*
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Ssimplify is set up to try various standard algebraic transformations on the expressions you
give. Sometimes, however, it can take more sophisticated transformations to make progress in

finding the simplest form of an expression.

Fullsimplify tries a much wider range of transformations, involving not only algebraic func-

tions, but also many other kinds of functions.

Simplify does nothing to this expression.
Simplify[Gamma[x] Gamma[l - x]]

Gamma [l - x] Gamma [ X]

Fullsimplify, however, transforms it to a simpler form.
FullSimplify[Gamma[x] Gamma[l - x]]

7 Csc [ x]

For fairly small expressions, Fullsimplify will often succeed in making some remarkable

simplifications. But for larger expressions, it can become unmanageably slow.

The reason for this is that to do its job, Fullsimplify effectively has to try combining every
part of an expression with every other, and for large expressions the number of cases that it

has to consider can be astronomically large.

simplify also has a difficult task to do, but it is set up to avoid some of the most time-consum-
ing transformations that are tried by Fullsimplify. For simple algebraic calculations, there-

fore, you may often find it convenient to apply simplify quite routinely to your results.

In more complicated calculations, however, even simplify, let alone Fullsimplify, may end
up needing to try a very large number of different forms, and therefore taking a long time. In
such cases, you typically need to do more controlled simplification, and use your knowledge of
the form you want to get to guide the process.

Putting Expressions into Different Forms

Complicated algebraic expressions can usually be written in many different ways. Mathematica

provides a variety of functions for converting expressions from one form to another.

In many applications, the most common of these functions are Expand, Factor and Simplify.
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However, particularly when you have rational expressions that contain quotients, you may need
to use other functions.

Expand [expr] multiply out products and powers

ExpandAll [expr] apply Expand everywhere

Factor [expr] reduce to a product of factors

Together [expr] put all terms over a common denominator
Apart [expr] separate into terms with simple denominators
Cancel [expr] cancel common factors between numerators and

denominators

Simplify [expr] try a sequence of algebraic transformations and give the
smallest form of expr found

Functions for transforming algebraic expressions.

Here is a rational expression that can be written in many different forms.
e=(x-1)"2(2+x)/ ((1+x) (x-3)"2)
(-1+x)2 (2 +x)

(-3+x)% (1 +x)

Expand expands out the numerator, but leaves the denominator in factored form.

Expand[e]
2 3x x3
(-3+x)2(1+x) (-3+x)2(1+x) (-3+x)%(1+x)

ExpandAll expands out everything, including the denominator.
ExpandAll[e]
2 3x x3

- +
9+3x-5x%x%+x°

3 3

9+3x-5x%x?+x 9+3x-5x%x*+x
Together collects all the terms together over a common denominator.
Together [%]

2-3x+x3

(-3+x)? (1 +x)
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Apart breaks the expression apart into terms with simple denominators.

Apart[%]
5 19 1
1+ + +
(-3+x)%2 4 (-3+x) 4 (1+x)

Factor factors everything, in this case reproducing the original form.
Factor[%]

(-1+x)? (2 +x)

(-3+x%)2 (1+x)

According to Simplify, this is the simplest way to write the original expression.
Simplify[e]
(-1+x)2 (2 +x)

(-3+x)2 (1 +x)

Getting expressions into the form you want is something of an art. In most cases, it is best
simply to experiment, trying different transformations until you get what you want. Often you
will be able to use palettes in the front end to do this.

When you have an expression with a single variable, you can choose to write it as a sum of
terms, a product, and so on. If you have an expression with several variables, there is an even
wider selection of possible forms. You can, for example, choose to group terms in the expres-

sion so that one or another of the variables is "dominant".

Collect [expr,x] group together powers of x

FactorTerms [expr, x] pull out factors that do not depend on x

Rearranging expressions in several variables.

Here is an algebraic expression in two variables.
v =Expand[(3+2Xx) "2 (x+2y) "2]

9x?+12x%+4x*+36xy+48x*y+16x>y +36y%+48xy? + 16 x%y?

This groups together terms in v that involve the same power of x.
Collect|[v, x]

4x*+36y*+x’ (12+16y) +x* (9+48y+16y°) +x (36y +48y°)
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This groups together powers of y.
Collect|[v, y]

9x*+12x> +4x*+ (36x+48%x" +16%°) y + (36 + 48 x + 16 x*) y*

This factors out the piece that does not depend on y.

FactorTerms|[v, y]

9+12x+4x X“+4xy+4y
2 2 2

As we have seen, even when you restrict yourself to polynomials and rational expressions,
there are many different ways to write any particular expression. If you consider more compli-
cated expressions, involving, for example, higher mathematical functions, the variety of possi-
ble forms becomes still greater. As a result, it is totally infeasible to have a specific function
built into Mathematica to produce each possible form. Rather, Mathematica allows you to con-
struct arbitrary sets of transformation rules for converting between different forms. Many Mathe-
matica packages include such rules; the details of how to construct them for yourself are given

in "Transformation Rules and Definitions".

There are nevertheless a few additional built-in Mathematica functions for transforming

expressions.

TrigExpand [expr] expand out trigonometric expressions into a sum of terms
TrigFactor [expr] factor trigonometric expressions into products of terms
TrigReduce [expr] reduce trigonometric expressions using multiple angles
TrigToExp [expr] convert trigonometric functions to exponentials
ExpToTrig [expr] convert exponentials to trigonometric functions
FunctionExpand [expr] expand out special and other functions

ComplexExpand [expr] perform expansions assuming that all variables are real
PowerExpand [expr] transform (xy)? into x? y?, etc.

Some other functions for transforming expressions.

This expands out the trigonometric expression, writing it so that all functions have argument x.
TrigExpand[Tan[x] Cos[2 x]]
3 Tan[x] 1

— Cos[x] Sin[x] - - —8in[x]? Tan[x]
2 2 2
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This uses trigonometric identities to generate a factored form of the expression.

TrigFactor[%]
Zsin{; —x} Sin[£+x} Tan[x]

This reduces the expression by using multiple angles.
TrigReduce[%]
1

-— Sec[x] (Sin[x] -Sin[3x])
2

This expands the sine assuming that x and y are both real.

ComplexExpand[Sin[x + I y]]

Cosh[y] Sin[x] + i Cos[x] Sinh[y]

This does the expansion allowing x and y to be complex.

ComplexExpand[Sin[x +Iy], {x, v}]

-Cosh[Im[x] + Re[y]] Sin[Im[y] -Re[x]] + 1 Cos[Im[y] - Re[x]] Sinh[Im[x] + Re[y]]

The transformations on expressions done by functions like Expand and Factor are always
correct, whatever values the symbolic variables in the expressions may have. Sometimes,
however, it is useful to perform transformations that are only correct for some possible values

of symbolic variables. One such transformation is performed by PowerExpand.

Mathematica does not automatically expand out non-integer powers of products.

Sart[x y]

Ner

PowerExpand does the expansion.

PowerExpand [%]

= h
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Simplifying with Assumptions

Simplify [expr,assum] simplify expr with assumptions
Simplifying with assumptions.

Mathematica does not automatically simplify this, since it is only true for some values of x.

Simplify[Sqrt[x~2]]

S

V x% is equal to x for x>0, but not otherwise.
{sqrt[4"2], sqrt[(-4) "2]}
{4, 4}

This tells Simplify to make the assumption x > 0, so that simplification can proceed.
Simplify[Sqrt[x~2], x > 0]

X

No automatic simplification can be done on this expression.

2a+2Sqrt[a-Sqrt[-b]] Sqrt[a+Sqrt[-b]]

rar2fa v o

If a and b are assumed to be positive, the expression can however be simplified.

Simplify[%, a > 0&&b > 0]

a+\/az+b]

2

Here is a simple example involving trigonometric functions.
Simplify[ArcSin[Sin[x]], -Pi/ 2 <x < Pi/ 2]

X
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Element [x,dom] state that x is an element of the domain dom
Element [ {x,x,...} ,dom] state that all the x; are elements of the domain dom
Reals real numbers

Integers integers

Primes prime numbers

Some domains used in assumptions.

This simplifies x* assuming that x is a real number.
Simplify[Sqrt[x~ 2], Element[x, Reals]]

Abs [x]

This simplifies the sine assuming that » is an integer.
Simplify[Sin[x+2nPi], Element[n, Integers]]

Sin[x]

With the assumptions given, Fermat'’s little theorem can be used.
Simplify[Mod[a"p, p], Element[a, Integers] && Element [p, Primes]]

Mod[a, p]

This uses the fact that sin (x), but not arcsin (x), is real when x is real.
Simplify[Re[{Sin[x], ArcSin[x]}], Element[x, Reals]]

{Sin[x], Re[ArcSin[x]]}

Picking Out Pieces of Algebraic Expressions

Coefficient [expr, form] coefficient of form in expr
Exponent [expr, form] maximum power of form in expr
Part [expr,n] or expr[[n]] nt" term of expr

Functions to pick out pieces of polynomials.



50 | Mathematics and Algorithms

Here is an algebraic expression.
e =Expand[(1+3x+4y~2)"2]

1+6x+9x*+8y?+24xy®+16y*

This gives the coefficient of x in e.

Coefficient[e, x]

6+ 24y

Exponent [expr, y] gives the highest power of y that appears in expr.
Exponent[e, y]
4

This gives the fourth term in e.
Part[e, 4]

8y?

You may notice that the function Part [expr, n] used to pick out the »™ term in a sum is the
same as the function described in "Manipulating Elements of Lists" for picking out elements in
lists. This is no coincidence. In fact, as discussed in "Manipulating Expressions like Lists," every
Mathematica expression can be manipulated structurally much like a list. However, as discussed
in "Manipulating Expressions like Lists," you must be careful, because Mathematica often shows

algebraic expressions in a form that is different from the way it treats them internally.

Coefficient works even with polynomials that are not explicitly expanded out.
Coefficient[(1+3x+4y"2) "2, x]

6+ 24y
Numerator [expr] numerator of expr
Denominator [expr] denominator of expr

Functions to pick out pieces of rational expressions.

Here is a rational expression.
r=(1+x)/(2(2-y))
1+x

2(2-y)
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Denominator picks out the denominator.
Denominator [%]

2(2-y)

Denominator gives 1 for expressions that are not explicit quotients.
Denominator[l/x+2/y]

1

Controlling the Display of Large Expressions

When you do symbolic calculations, it is quite easy to end up with extremely complicated expres -
sions. Often, you will not even want to see the complete result of a computation.

If you end your input with a semicolon, Mathematica will do the computation you asked for, but

will not display the result. You can nevertheless use % or out [n] to refer to the result.

By default, the Mathematica front end will display any outputs which are excessively large in a

shortened form inside an interface which allows you to refine the display of the output.

Mathematica shows this output with 5138 of the terms omitted.

Expand[(x + 2y +1) ~100]

A very large output was generated. Here is a sample of it:

1+100x+4950x?+161700x3+3921225x%+75287520x>+ 1192052400 x°%+ <«<5138> +
1568717617 782433884352170216652800y°® + 3137435235564867768704340433305600xy°%+
1568717617 782433884352170216652800 x?y°® + 63382530011411470074835160268800y°° +
63382530011411470074835160268800xy°® +1267650600228229401496703205376 y°°

Show Less I Show More I Show Full Qutput I Set Size Limit...

The Show Less and Show More buttons allow you to decrease or increase the level of detail to which
Mathematica shows the expression. The Show Full Output button removes the interface entirely and

displays the full result, but the result may take considerable time to display. The default threshold size at
which this feature starts working may be set using the Set Size Limit option, which opens the Prefer-

ences dialog to the panel with the appropriate setting.

The large output suppression feature is implemented using the Mathematica function Short.
You can use short directly for finer control over the display of expressions. You can also use it

for outputs which are not large enough to be suppressed by the default suppression scheme.
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Ending your input with ; stops Mathematica from displaying the complicated result of the
computation.
Expand[(x+5y+10) "“8];

You can still refer to the result as . // Short displays a one-line outline of the result. The
<< n >> stands for n terms that have been left out.

% // Short

100000000 + 80000000 x + 28000000 x* + <<39> + 6250000y’ + 625000 xy’ + 390625 y®

This shows a three-line version of the expression. More parts are now visible.
Short[%, 3]

100000000 + 80000000 x + 28000000 x? + 5600000 x> + 700000 x* +
56000 x° + 2800 x°® + 80 x” + x® + «<28>> + 5250000 x? y° + 175000 x> y° +
43750000 y® + 8750000 x y°® + 437500 x*> y® + 6250000y’ + 625000 xy’ + 390 625 y®

This gives the total number of terms in the sum.

Length[%]

45
command ; execute command, but do not print the result
expr//Short show a one-line outline form of expr
Short [expr,n] show an rn-line outline of expr

Some ways to shorten your output.

Using Symbols to Tag Objects

There are many ways to use symbols in Mathematica. Here we use symbols as "tags" for differ-

ent types of objects.

Working with physical units gives one simple example. When you specify the length of an
object, you want to give not only a number, but also the units in which the length is measured.
In standard notation, you might write a length as 12 meters.

You can imitate this notation almost directly in Mathematica. You can for example simply use a

symbol meters to indicate the units of your measurement.
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The symbol meters here acts as a tag, which indicates the units used.
12 meters

12 meters

You can add lengths like this.
% + 5.3 meters

17.3 meters

This gives a speed.
% / (25 seconds)
0.692 meters

seconds

This converts to a speed in feet per second.
% /. meters -> 3.28084 feet
2.27034 feet

seconds

There is in fact a Mathematica package that allows you to work with units. The package defines

many symbols that represent standard types of units.

Load the Mathematica package for handling units.

<< Units"

The package uses standardized names for units.
12 Meter / Second
12 Meter

Second
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The function Convert [expr, units] converts to the specified units.
Convert[%, Mile / Hour]
37500 Mile

1397 Hour

Usually you have to give prefixes for units as separate words.
Convert|[3 Kilo Meter / Hour, Inch / Minute]
250000 Inch

127 Minute



Mathematics and Algorithms | 55

Algebraic Manipulation

Structural Operations on Polynomials

Expand [ poly] expand out products and powers

Factor [ poly] factor completely

FactorTerms [ poly] pull out any overall numerical factor

FactorTerms [poly, {x,y,...}] pull out any overall factor that does not depend on x, y, ...
Collect [poly, x] arrange a polynomial as a sum of powers of x

Collect [poly, {x,y,...}] arrange a polynomial as a sum of powers of x, y, ...

Structural operations on polynomials.

Here is a polynomial in one variable.
(2+4x°2)"2(x-1)"3

(-1ex)? (2+4x2)°

Expand expands out products and powers, writing the polynomial as a simple sum of terms.
t = Expand[%]

~4+12x-28x2+52x>-64x?+64x>-48x°%+16%’

Factor performs complete factoring of the polynomial.
Factor[t]

4(-1+x)° (1+2%)°

FactorTerms pulls out the overall numerical factor from t.

FactorTerms[t]

4(-1+3x-7x"+13%° -16x* +16x° - 12x°+4%)

There are several ways to write any polynomial. The functions Expand, FactorTerms and
Factor give three common ways. Expand writes a polynomial as a simple sum of terms, with all
products expanded out. FactorTerms pulls out common factors from each term. Factor does
complete factoring, writing the polynomial as a product of terms, each of as low degree as

possible.
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When you have a polynomial in more than one variable, you can put the polynomial in different
forms by essentially choosing different variables to be "dominant". Collect [poly, x] takes a
polynomial in several variables and rewrites it as a sum of terms containing different powers of

the "dominant variable" x.

Here is a polynomial in two variables.
Expand[(1+2x+y) " 3]

1+6x+12x2+8x>+3y+12xy+12x°y+3y2+6xy?+y?

Collect reorganizes the polynomial so that x is the "dominant variable".
Collect[%, x]

1+8x°+3y+3y*+y’+x® (12+12y) +x (6+12y + 6y?)

If you specify a list of variables, Collect will effectively write the expression as a polynomial
in these variables.

Collect[Expand[(l+x+2y+32)"3], {x, v}]

1+x3+8y°+92+2722+2723+x% (3+6y+92) +
y2(12+362)+y(6+36z+54zz)+x<3+12y2+182+27zz+y(12+362))

Expand [ poly, patt] expand out poly avoiding those parts which do not contain
terms matching patt

Controlling polynomial expansion.

This avoids expanding parts which do not contain x.
Expand[(x+1) "2 (y+1) "2, x]

(1+y)2+2x (1+y)2+x% (1+y)2

This avoids expanding parts which do not contain objects matching b[_].
Expand[ (a[l] +a[2] +1) 2 (1 +b[1]) ~2, b[_]]

(1+a[l] +a[2])?+2 (1+a[l] +a[2])%b[1] + (1 +a[l] +a[2])%b[1]?

PowerExpand [expr] expand out (ab)" and (ab)c in expr
PowerExpand [expr,As sumptions —>assum}

expand out expr assuming assum

Expanding powers and logarithms.
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Mathematica does not automatically expand out expressions of the form (ab)*c except when c is
an integer. In general it is only correct to do this expansion if a and b are positive reals. Never-
theless, the function PowerExpand does the expansion, effectively assuming that « and » are

indeed positive reals.

Mathematica does not automatically expand out this expression.
(xy)"n

(xy)"

PowerExpand does the expansion, effectively assuming that x and y are positive reals.

PowerExpand [%]

n n

Xy

Log is not automatically expanded out.
Log[%]

Log [x“ y"]

PowerExpand does the expansion.
PowerExpand [%]

nlLog(x] + nLog[y]

PowerExpand returns a result correct for the given assumptions.

PowerExpand [%%, Assumptions » {x >0, n< 0}]

1 Im[nLog[x]] Im[nLog[y]]
ZjﬂFloor{f— - +nLog[x] + nLog|y]
2 27 27
Collect [poly, patt] collect separately terms involving each object that matches
patt
Collect [poly, patt, h] apply h to each final coefficient obtained

Ways of collecting terms.

Here is an expression involving various functions £.
t=3+x£f[1] +x"2£[1] +y£[2]"2+z£[2]"2

3+xf[1] +x*£[1] +yf[2]2+zFf[2]2
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This collects terms that match £[_].
Collect[t, £f[_]]

3+ (x+x?) £[1] + (v +2) £[2]7

This applies Factor to each coefficient obtained.
Collect[t, £[_], Factor]

3+x (1l+x) £[1] + (y+2) £[2]2

HornerForm [expr, Xx] puts expr into Horner form with respect to x
Horner form.

Horner form is a way of arranging a polynomial that allows numerical values to be computed

more efficiently by minimizing the number of multiplications.
This gives the Horner form of a polynomial.

HornerForm[l+2x+3x"2+4x"3, x]

l+x(2+x(3+4x%))

Finding the Structure of a Polynomial

PolynomialQ [expr, x] test whether expr is a polynomial in x

PolynomialQ [expr, {x|,X2,...}] test whether expr is a polynomial in the x;
Variables [poly] a list of the variables in poly

Exponent [ poly, x] the maximum exponent with which x appears in poly
Coefficient [poly,expr] the coefficient of expr in poly

Coefficient [poly,expr,n] the coefficient of expr” in poly

Coefficient [poly,expr,0] the term in poly independent of expr

CoefficientList [poly, {x1,x,...}] denerate an array of the coefficients of the x; in poly

CoefficientRules [poly, {x;,Xx2,...}] get exponent vectors and coefficients of monomials
Finding the structure of polynomials written in expanded form.
Here is a polynomial in two variables.

t=(1+x)"3(1-y-x)"2

(1+x)°(1-x-y)?2
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This is the polynomial in expanded form.
Expand[t]

1+x-2x2-2x3+x*+x°-2y-dxy+4d4xPy+2xty+y?+3xy?+3x2y?+x’y?

PolynomialQ reports that t is a polynomial in x.
PolynomialQ[t, x]

True

This expression, however, is not a polynomial in x.
PolynomialQ[x + Sin[x], x]

False

Variables gives a list of the variables in the polynomial t.
Variables[t]

{x, ¥}

This gives the maximum exponent with which x appears in the polynomial t. For a polynomial
in one variable, Exponent gives the degree of the polynomial.

Exponent[t, x]
5

Coefficient [poly, expr] gives the total coefficient with which expr appears in poly. In this
case, the result is a sum of two terms.

Coefficient[t, x" 2]

-2 +3y?

This is equivalent to Coefficient [t, x"2].
Coefficient[t, x, 2]

-2+3y?

This picks out the coefficient of x° in t.
Coefficient[t, x, 0]

1- 2y+y2
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CoefficientList gives a list of the coefficients of each power of x, starting with x°.
CoefficientList[1+3x"2+4x"4, x]

{1, 0, 3, 0, 4}

For multivariate polynomials, CoefficientList gives an array of the coefficients for each
power of each variable.

CoefficientList[t, {x, y}]

{{1, -2, 1y, {1, -4, 3}, {-2, 0, 3}, {-2, 4, 1}, {1, 2, 0}, {1, O, 0}}

CoefficientRules includes only those monomials that have nonzero coefficients.

CoefficientRules[t, {x, y}]

{{5,0}->1, {4, 1}->2, {4, 0}>1, {3, 2}>1, {3, 1} >4, {3, 0} >-2, {2, 2} >3,
{2, 0} »-2, {1, 2} >3, {1, 1} » -4, {1, 0} >1, {0, 2} >1, {0, 1} >-2, {0, 0} > 1}

It is important to notice that the functions in this tutorial will often work even on polynomials

that are not explicitly given in expanded form.

Many of the functions also work on expressions that are not strictly polynomials.

Without giving specific integer values to a, b and ¢, this expression cannot strictly be consid-
ered a polynomial.
x"a+x"b+y”c

x? 4+ xP 4+ y°
Exponent [expr, x] still gives the maximum exponent of x in expr, but here has to write the
result in symbolic form.

Exponent [%, x]

Max [0, a, b]

Structural Operations on Rational Expressions

For ordinary polynomials, Factor and Expand give the most important forms. For rational

expressions, there are many different forms that can be useful.
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ExpandNumerator [expr] expand numerators only

ExpandDenominator [expr] expand denominators only

Expand [expr] expand numerators, dividing the denominator into each
term

ExpandAll [expr] expand numerators and denominators completely

Different kinds of expansion for rational expressions.

Here is a rational expression.
t=(1+x)"2/(1-%x)+3x"2/(1+x)"2+(2-x)"2
3 x? (1+x)2

(2-x)%24 — 4
(1+x)? 1-x

ExpandNumerator writes the numerator of each term in expanded form.

ExpandNumerator[t]

3x? 1+2x+x°
4-4x+x°+ +
(1+x)2 1-x

Expand expands the numerator of each term, and divides all the terms by the appropriate
denominators.

Expand[t]

1 2x x? 3x?
-4 x+ +x2 4

4 + P
1-x 1-x 1-x (1+x)2

ExpandDenominator expands out the denominator of each term.

ExpandDenominator[t]

(1+x)? 3x?
2
(2 -x)°+ +
1-x 1+2x+x°

ExpandAll does all possible expansions in the numerator and denominator of each term.
ExpandAll[t]

1 2x x? 3 x?
4 + -4 x+ +x2 4 +
1-x 1-x 1-x 1+2x+%°
ExpandAll [expr,patt] , etc. avoid expanding parts which contain no terms matching patt

Controlling expansion.
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This avoids expanding the term which does not contain z.
ExpandAll[(x+1)"2/y"2+ (z+1)"2/2"2, z]

1+ +—+ —
y? 22 z
Together [expr] combine all terms over a common denominator
Apart [expr] write an expression as a sum of terms with simple
denominators
Cancel [expr] cancel common factors between numerators and
denominators
Factor [expr] perform a complete factoring

Structural operations on rational expressions.

Here is a rational expression.
u=(-4x+x"2)/ (-x+x"2) + (-4+3x+x72) / (-1+x"2)
“4x+x? -4+3x+x°

+
-X + x? -1+ x?

Together puts all terms over a common denominator.
Together[u]
2 (-4 +x%)

(-1+x) (1+%x)

You can use Factor to factor the numerator and denominator of the resulting expression.
Factor[%]
2 (-2 +%) (2+x%)

(-1+x) (1+x)

Apart writes the expression as a sum of terms, with each term having as simple a denomina-
tor as possible.

Apart[u]
3 3

2 -
-1+x 1+x
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Cancel cancels any common factors between numerators and denominators.
Cancel[u]
-4 +x 4 +x

+
-1+x 1+x

Factor first puts all terms over a common denominator, then factors the result.
Factor[%]
2 (-2+x) (2+x)

(-1+x) (1+x)

In mathematical terms, Apart decomposes a rational expression into "partial fractions".

In expressions with several variables, you can use Apart [expr, var] to do partial fraction decom-

positions with respect to different variables.

Here is a rational expression in two variables.
v=(x"2+y72)/ (x+xY)

X2 +y2

X+XY

This gives the partial fraction decomposition with respect to x.
Apart[v, x]

x y?

l+y X (1+y)

Here is the partial fraction decomposition with respect to y.
Apart[v, y]

1 vy 1+x?

-—— + — 4+
X x x(l+y)

Algebraic Operations on Polynomials

For many kinds of practical calculations, the only operations you will need to perform on polyno-
mials are essentially the structural ones already discussed.

If you do more advanced algebra with polynomials, however, you will have to use the algebraic

operations discussed in this tutorial.
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You should realize that most of the operations discussed in this tutorial work only on ordinary

polynomials, with integer exponents and rational-number coefficients for each term.

PolynomialQuotient [poly,, poly,,x] find the result of dividing the polynomial poly, in x by poly,,
dropping any remainder term

PolynomialRemainder | find the remainder from dividing the polynomial poly, in x
poly; , poly, , x] by poly,

PolynomialQuotientRemainder [poly,, poly,, x]

give the quotient and remainder in a list

PolynomialMod [ poly, m] reduce the polynomial poly modulo m

PolynomialGCD [ poly, , poly,] find the greatest common divisor of two polynomials

PolynomialLCM [ poly,, poly,] find the least common multiple of two polynomials

PolynomialExtendedGCD | find the extended greatest common divisor of two
poly, , poly, ] polynomials

Resultant [ poly, , poly, , x] find the resultant of two polynomials

Subresultants [ poly,, poly, , x] find the principal subresultant coefficients of two

polynomials
Discriminant [poly,x] find the discriminant of the polynomial poly

GroebnerBasis [ {poly,, poly,,...} , {x1,X2,...}]

find the Grébner basis for the polynomials poly;
GroebnerBasis [ {poly,,poly,,...} y {X1sX2, ...} v {Y14Y2,.-.}]

find the Grobner basis eliminating the y;
PolynomialReduce [poly, { poly,,poly,,...} ; {X1,%2,...}]

find a minimal representation of poly in terms of the poly;

Reduction of polynomials.

Given two polynomials p(x) and ¢(x), one can always uniquely write %:a(x)+ z:—g, where the

degree of b(x) is less than the degree of g(x). PolynomialQuotient gives the quotient a(x), and

PolynomialRemainder gives the remainder b(x).

This gives the remainder from dividing x> by 1 + x.
PolynomialRemainder[x”~2, x+1, x]

1
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Here is the quotient of x* and x + 1, with the remainder dropped.
PolynomialQuotient[x"2, x+1, x]

-1+x

This gives back the original expression.
Simplify[ (x + 1) %+ %%]

XZ

Here the result depends on whether the polynomials are considered to be in x or y.
{PolynomialRemainder[x +y, x -y, x], PolynomialRemainder([x+y, x-y, y]}

{2y, 2x}

PolynomialMod is essentially the analog for polynomials of the function Mod for integers. When
the modulus m is an integer, PolynomialMod [poly, m] simply reduces each coefficient in poly
modulo the integer m. If m is a polynomial, then PolynomialMod [poly, m] effectively tries to get
a polynomial with as low a degree as possible by subtracting from poly appropriate multiples ¢ m
of m. The multiplier ¢ can itself be a polynomial, but its degree is always less than the degree of
poly. PolynomialMod Yields a final polynomial whose degree and leading coefficient are both as
small as possible.

This reduces x> modulo x + 1. The result is simply the remainder from dividing the polynomials.
PolynomialMod[x"2, x + 1]
1

In this case, PolynomialMod and PolynomialRemainder do not give the same result.

{PolynomialMod[x"2, ax + 1], PolynomialRemainder[x"2, ax+1, x]}

)
The main difference between PolynomialMod and PolynomialRemainder is that while the
former works simply by multiplying and subtracting polynomials, the latter uses division in
getting its results. In addition, PolynomialMod allows reduction by several moduli at the same

time. A typical case is reduction modulo both a polynomial and an integer.
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This reduces the polynomial x> + 1 modulo both x + 1 and 2.
PolynomialMod[x"2+1, {x+1, 2}]
0

PolynomialGCD [poly,, poly,] finds the highest degree polynomial that divides the poly, exactly.

It gives the analog for polynomials of the integer function Gcp.

PolynomialGCD gives the greatest common divisor of the two polynomials.
PolynomialGCD[(1-x) "2 (1 +x) (2+x), (1-%x) (2+%x) (3+x)]

(-1 +x) (2+x)

PolynomialExtendedGCD gives the extended greatest common divisor of the two polynomi-
als.

{g, {r, s}} = PolynomialExtendedGCD[x"3 +2x"2-x+1, x4 +x+2, X]

29 26x  23x? 21x* 93 19x 21 x?

(- 5o ,
215 215 215 215 215 215 215

The returned polynomials r and s can be used to represent the GCD in terms of the original
polynomials.

r(x*"3+2x"2-x+1)+s (x"4+x+2) // Expand

1

The function Resultant [poly,, poly,, x] is used in a number of classical algebraic algorithms.

The resultant of two polynomials a and b, both with leading coefficient one, is given by the
product of all the differences a; - b; between the roots of the polynomials. It turns out that for

any pair of polynomials, the resultant is always a polynomial in their coefficients. By looking at
when the resultant is zero, you can tell for what values of their parameters two polynomials
have a common root. Two polynomials with leading coefficient one have k¥ common roots if
exactly the first k elements in the list subresultants [poly,, poly,, x] are zero.

Here is the resultant with respect to y of two polynomials in x and y. The original polynomials
have a common root in y only for values of x at which the resultant vanishes.

Resultant[(x-y) "2-2,y"2-3, y]

1-10x%+x*
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The function Discriminant [poly, x] is the product of the squares of the differences of its roots.
It can be used to determine whether the polynomial has any repeated roots. The discriminant is
equal to the resultant of the polynomial and its derivative, up to a factor independent of the
variable.

This polynomial has a repeated root, so its discriminant vanishes.
Discriminant[ (x-1) "2, x]

0

This polynomial has distinct roots, so its discriminant is nonzero.
Discriminant[x"4 -1, x]

-256

Grobner bases appear in many modern algebraic algorithms and applications. The function
GroebnerBasis [ {poly,, poly,, ...}, {x1, x2, ...} ] takes a set of polynomials, and reduces this set
to a canonical form from which many properties can conveniently be deduced. An important
feature is that the set of polynomials obtained from GroebnerBasis always has exactly the
same collection of common roots as the original set.

The (x + y)? is effectively redundant, and so does not appear in the Grébner basis.
GroebnerBasis[{(x+Yy), (x+Yy) "2}, {x, v}]

{x+y}

The polynomial 1 has no roots, showing that the original polynomials have no common roots.
GroebnerBasis[{x+y, x"2-1, y"2-2x}, {x, v}]
{1}

The polynomials are effectively unwound here, and can now be seen to have exactly five com-
mon roots.

GroebnerBasis[{xy"2+2xy+x"2+1, xy+y~2+1}, {x, y}]

{F1-y? ey eyt ey’ xey? oy’ o ¥

PolynomialReduce [poly, {pi, pas ...}, {x1, X2, ...} ] Yyields a list {{a;, as, ...}, b} of polynomials
with the property that 4 is minimal and a; p; +a, p» + ... + b is exactly poly.
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This writes x> + y? in terms of x — y and y + q, leaving a remainder that depends only on a.
PolynomialReduce[x"2+y"2, {x-y, y+a}, {x, y}]

{{x+y, -2a+2y}, 2a2}l

Factor [ poly] factor a polynomial

FactorSquareFree [ poly] write a polynomial as a product of powers of square-free
factors

FactorTerms [poly,x] factor out terms that do not depend on x

FactorList [poly] , FactorSquareFreelist [poly] , FactorTermsList [poly]
give results as lists of factors

Functions for factoring polynomials.

Factor, FactorTerms and FactorSquareFree perform various degrees of factoring on polynomi-
als. Factor does full factoring over the integers. FactorTerms extracts the "content" of the

polynomial. FactorSquareFree pulls out any multiple factors that appear.

Here is a polynomial, in expanded form.
t = Expand[2 (1 +x) "2 (2+Xx) (3+x)]

12 +34x+34x%+14%x%+2x*

FactorTerms pulls out only the factor of 2 that does not depend on x.

FactorTerms[t, x]

2 (6+17x+17x%+ 7% +x)

FactorSquareFree factors out the 2 and the term (1 + x)A2, but leaves the rest unfactored.

FactorSquareFree[t]

2 (1+x)? (6+5x+x")

Factor does full factoring, recovering the original form.
Factor[t]

2 (1+x)2(2+%) (3+x)

Particularly when you write programs that work with polynomials, you will often find it conve-
nient to pick out pieces of polynomials in a standard form. The function FactorList gives a list
of all the factors of a polynomial, together with their exponents. The first element of the list is

always the overall numerical factor for the polynomial.
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The form that FactorList returns is the analog for polynomials of the form produced by

FactorInteger for integers.

Here is a list of the factors of the polynomial in the previous set of examples. Each element of
the list gives the factor, together with its exponent.

FactorList[t]
{2, 1}, {1+x, 2}, {2+x, 1}, {3+%, 1}}

Factor [poly,GaussianIntegers —>True]
factor a polynomial, allowing coefficients that are Gaussian
integers

Factoring polynomials with complex coefficients.

Factor and related functions usually handle only polynomials with ordinary integer or rational-
number coefficients. If you set the option GaussianIntegers -> True, however, then Factor
will allow polynomials with coefficients that are complex numbers with rational real and imagi-

nary parts. This often allows more extensive factorization to be performed.

This polynomial is irreducible when only ordinary integers are allowed.
Factor[1l + x" 2]

1+ x?

When Gaussian integer coefficients are allowed, the polynomial factors.
Factor[l + x" 2, GaussianIntegers -> True]

(-1 +x) (1+x)

IrreduciblePolynomialQ [ poly] test whether poly is an irreducible polynomial over the
rationals
IrreduciblePolynomialQ [poly, test whether poly is irreducible over the Gaussian rationals
GaussianIntegers —>True]
IrreduciblePolynomialQ [ test irreducibility over the rationals extended by the
poly,Extension»Automatic] algebraic number coefficients of poly

Irreducibility testing.
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A polynomial is irreducible over a field F if it cannot be represented as a product of two noncon-

stant polynomials with coefficients in F.

This polynomial is irreducible over the rationals.
IrreduciblePolynomialQ[x "2 + 4]

True

Over the Gaussian rationals, the polynomial is reducible.
IrreduciblePolynomialQ[x "2 + 4, GaussianIntegers -> True]

False

By default, algebraic numbers are treated as independent variables.
IrreduciblePolynomialQ[x "2 + 2 Sqrt[2] x + 2]

True

Over the rationals extended by Sqrt [2], the polynomial is reducible.
IrreduciblePolynomialQ[x "2 + 2 Sqrt[2] x + 2, Extension -» Automatic]

False

Cyclotomic [n,x] give the cyclotomic polynomial of order n in x

Cyclotomic polynomials.
Cyclotomic polynomials arise as "elementary polynomials" in various algebraic algorithms. The
cyclotomic polynomials are defined by C,(x) =[] (x-¢**"¥"), where k runs over all positive inte-

gers less than » that are relatively prime to n.

This is the cyclotomic polynomial Cg (x).
Cyclotomic[6, x]

1-x+x°

Co(x) appears in the factors of x° — 1.
Factor[x"6 -1]

(-1+x) (1+x) (1-x+%") (1+x+x%)
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Decompose [ poly, x] decompose poly, if possible, into a composition of a list of
simpler polynomials

Decomposing polynomials.

Factorization is one important way of breaking down polynomials into simpler parts. Another,
quite different, way is decomposition. When you factor a polynomial P(x), you write it as a
product p;(x) p»(x) ... of polynomials p;(x). Decomposing a polynomial Q(x) consists of writing it as

a composition of polynomials of the form g;(ga2( ... (%) ...)).

Here is a simple example of Decompose. The original polynomial x* + x> + 1 can be written as
the polynomial T AxA+ 1, where X is the polynomial x2.

Decompose[x~4+x"2+1, x]

+ 2,X
{l X+ X Z}

Here are two polynomial functions.
(ql[x_]1 =1-2x+x"4;92[x_] =5x+x"33;)

This gives the composition of the two functions.
Expand[ql[q2[x]]]

1-10x-2x>+625x%+500x%+150x%+20x0+x!?

Decompose recovers the original functions.
Decompose[%, x]

{1—2x+x4, 5x+x3}

Decompose [poly, x] is set up to give a list of polynomials in x, which, if composed, reproduce
the original polynomial. The original polynomial can contain variables other than x, but the
sequence of polynomials that Decompose produces are all intended to be considered as func-

tions of x.

Unlike factoring, the decomposition of polynomials is not completely unique. For example, the
two sets of polynomials p; and ¢;, related by ¢,(x)=pi(x—a) and g¢,(x) = p»(x) +a give the same
result on composition, so that p;(p,(x)) = q1(¢2(x)). Mathematica follows the convention of absorb-

ing any constant terms into the first polynomial in the list produced by Decompose.
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InterpolatingPolynomial [ {fi, fo,...} ,X]
give a polynomial in x which is equal to f; when x is the
integer i

InterpolatingPolynomial [ { {x;,fi}, {x2,/f2},s---},X]
give a polynomial in x which is equal to f; when x is x;

Generating interpolating polynomials.

This yields a quadratic polynomial which goes through the specified three points.
InterpolatingPolynomial [{{-1, 4}, {0, 2}, {1, 6}}, x]

4+ (1+x) (-2+3%)

When x is 0, the polynomial has value 2.
%/.x->0
2

Polynomials Modulo Primes

Mathematica can work with polynomials whose coefficients are in the finite field Z, of integers

modulo a prime p.

PolynomialMod [poly, p] reduce the coefficients in a polynomial modulo p
Expand [poly,Modulus—>p] expand poly modulo p
Factor [poly,Modulusf>p] factor poly modulo p

PolynomialGCD [poly1 , poly, ,Modulus —>p]
find the GCD of the poly, modulo p

GroebnerBasis [polys ,vars ,Modulus - >p]

find the Grébner basis modulo p

Functions for manipulating polynomials over finite fields.

Here is an ordinary polynomial.
Expand[ (1 +x) " 6]

1+6x+15x%+20x>+15x* +6x° +x°
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This reduces the coefficients modulo 2.
PolynomialMod[%, 2]

1+x%+x+x8

Here are the factors of the resulting polynomial over the integers.
Factor[%]

(l+x2) (1 +X4)

If you work modulo 2, further factoring becomes possible.

Factor[%, Modulus -> 2]

(1+x)°

Symmetric Polynomials

A symmetric polynomial in variables x, ..., x, is a polynomial that is invariant under arbitrary

permutations of x, ..., x,. Polynomials

S1=X1+xX+...+Xx,
S)=X1Xp+ X1 X3+ ...+ X1 Xy

Sp=X1 X2 ... Xp
are called elementary symmetric polynomials in variables xi, ..., x,.

The fundamental theorem of symmetric polynomials says that every symmetric polynomial in

xi, ..., X, can be represented as a polynomial in elementary symmetric polynomials in xi, ..., x,.

When the ordering of variables is fixed, an arbitrary polynomial f can be uniquely represented
as a sum of a symmetric polynomial p, called the symmetric part of f, and a remainder ¢ that

n

does not contain descending monomials. A monomial cxj'...x;' is called descending iff
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SymmetricPolynomial [ give the k" elementary symmetric polynomial in the
ky{xXi, .., %} ] variables xq, ..., x,
SymmetricReduction [f, {x;,...,x,}] give a pair of polynomials {p, g} in x{, ..., x, such that
f==p+gq, where p is the symmetric part and g is the
remainder

SymmetricReduction [f, {Xi,...,Xx}, {S1s---sSn}]

give the pair {p, g} with the elementary symmetric polynomi-
als in p replaced by sy, ..., s,

Functions for symmetric polynomial computations.

Here is the elementary symmetric polynomial of degree three in four variables.
SymmetricPolynomial[3, {x, y, 2z, t}]

tXy+txz+tyz+xyz

This writes the polynomial (x + y)> + (x + 2)*> + (z + y)? in terms of elementary symmetric polynomi-
als. The input polynomial is symmetric, so the remainder is zero.

SymmetricReduction[ (x+y)2+ (x+2)2+ (z2+¥)%, {x, ¥, Z}]

{2 (x+y+2)2-2 (xy+Xz2+y2), 0}

Here the elementary symmetric polynomials in the symmetric part are replaced with variables
S1, 82, 83. The polynomial is not symmetric, so the remainder is not zero.

Symmei:ricReduction[x5 +y° +2*, {x, v, 2}, {s1, s2, s3}]

5 3
{sl—55152+5515§+55fs3—55253, z4—25}

SymmetricReduction can be applied to polynomials with symbolic coefficients.

4

SymmetricReduction[x5+y5+z +axt+by*+cz’, {x,y, 2}, {s1, s2, 53}]

5 3
{as‘{+sl—4asfsz—Sslsz+2as§+Ssls§+4asls3+55fs3—55253, (—a+b)y4+(l—a) 28+ (-1+0) 25}

Polynomials over Algebraic Number Fields

Functions like Factor usually assume that all coefficients in the polynomials they produce must
involve only rational numbers. But by setting the option Extension you can extend the domain

of coefficients that will be allowed.
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Factor [poly,Extension—> {a, , Ay ... } }

factor poly allowing coefficients that are rational combina-
tions of the ¢;

Factoring polynomials over algebraic number fields.

Allowing only rational number coefficients, this polynomial cannot be factored.
Factor[1l + x" 4]

1+x*

With coefficients that can involve \/7, the polynomial can now be factored.
Factor[l + x" 4, Extension -> {Sqrt[2]}]

—(—1+\/?x—x2) (1+ﬁx+x2]

The polynomial can also be factored if one allows coefficients involving vV -1 .
Factor[l + x4, Extension -> {Sqrt[-1]}]

(-1 +x?) (i+%%)

GaussianIntegers -> True is equivalent to Extension -> Sqgrt[-1].

Factor[1l + x4, GaussianIntegers -> True]

(-1 +x?) (i+%%)

If one allows coefficients that involve both V2 and v -1 the polynomial can be factored com-
pletely.
Factor[1l + x4, Extension -> {Sqrt[2], Sqrt[-1]}]

z[ﬁ,mm] Vo -a-ns) (V2 e a-nx) (V2 - a-ix

Expand gives the original polynomial back again.
Expand [%]

1+ x*
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Factor [poly, Extension->Automatic ]
factor poly allowing algebraic numbers in poly to appear in
coefficients

Factoring polynomials with algebraic number coefficients.

Here is a polynomial with a coefficient involving V2.
t = Expand[ (Sqrt[2] + x) "~ 2]

2+2\/?x+x2

By default, Factor will not factor this polynomial.
Factor[t]

2+2\/?x+x2

But now the field of coefficients is extended by including \/7, and the polynomial is factored.

Factor[t, Extension -> Automatic]

V7 -

2

Other polynomial functions work much like Factor. By default, they treat algebraic number
coefficients just like independent symbolic variables. But with the option

Extension -> Automatic they perform operations on these coefficients.

By default, Cancel does not reduce these polynomials.
Cancel[t/ (x"2-2)]

2+2V2 x+x?

-2+ x?

But now it does.

Cancel[t / (x"~2-2), Extension -> Automatic]
V7 -x
V2 -x

By default, PolynomialLCM pulls out nho common factors.
PolynomialLCM[t, x"2 - 2]

(-2 +x%) [2+2\/?x+x2]
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But now it does.

PolynomialLCM[t, x~2 - 2, Extension -> Automatic]

—2\/7—2x+\/?x2+x3

IrreduciblePolynomialQ [ test whether poly is an irreducible polynomial over the
poly,ExtensionaAutomatic] rationals extended by the coefficients of poly

IrreduciblePolynomialQ [ test whether poly is irreducible over the rationals extended
poly,Extension->{a;,a, }} by the coefficients of poly and by a;, a,, ...

IrreduciblePolynomialQ [ test irreducibility over the field of all complex numbers
poly,Extension»All}

Irreducibility testing.

A polynomial is irreducible over a field F if it cannot be represented as a product of two noncon-
stant polynomials with coefficients in F.

By default, algebraic numbers are treated as independent variables.
IrreduciblePolynomialQ[x "2 + 2 Sqrt[2] x + 2]

True

Over the rationals extended by Sqrt [2], the polynomial is reducible.

IrreduciblePolynomialQ[x "2 + 2 Sqrt[2] x + 2, Extension -» Automatic]

False

This polynomial is irreducible over the rationals.
IrreduciblePolynomialQ[x "2 - 3]

True

Over the rationals extended by Sqrt [3], the polynomial is reducible.

IrreduciblePolynomialQ[x "2 - 3, Extension -» {Sqrt[3]}]

False

This polynomial is irreducible over the field of all complex numbers.

IrreduciblePolynomialQ[x”"3 -5xy+ 7, Extension » All]

True
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Trigonometric Expressions

TrigExpand [expr] expand trigonometric expressions out into a sum of terms
TrigFactor [expr] factor trigonometric expressions into products of terms
TrigFactorList [expr] give terms and their exponents in a list

TrigReduce [expr] reduce trigonometric expressions using multiple angles

Functions for manipulating trigonometric expressions.

This expands out a trigonometric expression.
TrigExpand[Sin[2 x] Cos[2y]]

2 Cos[x] Cos[y]?sSin[x] - 2 Cos[x] Sin[x] Sin[y]?

This factors the expression.
TrigFactor[%]
It Tt

4 Cos[x] Sin[x] Sin{z —y} Sin{Z +y}

And this reduces the expression to a form that is linear in the trigonometric functions.

TrigReduce [%]

(Sin[2x-2y] +Sin[2x+2y])

N | e

TrigExpand works on hyperbolic as well as circular functions.
TrigExpand[Tanh[x +y]]
Cosh[y] Sinh[x] Cosh[x] Sinh[y]

4
Cosh[x] Cosh[y] + Sinh[x] Sinh[y] Cosh[x] Cosh[y] + Sinh[xX] Sinh[y]

TrigReduce reproduces the original form again.
TrigReduce [%]

Tanh [x + y]

Mathematica automatically uses functions like Tan whenever it can.
Sin[x] ~2 / Cos[x]

Sin[x] Tan[x]
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With TrigFactorList, however, you can see the parts of functions like Tan.
TrigFactorList [%]
{{1, 1}, {sin[x], 2}, {Cos[x], -1}}

TrigToExp [expr] write trigonometric functions in terms of exponentials

ExpToTrig [expr] write exponentials in terms of trigonometric functions

Converting to and from exponentials.

TrigToExp writes trigonometric functions in terms of exponentials.
TrigToExp[Tan[x]]
i (e—nx _ emx)

e ix 4 elx

TrigToExp also works with hyperbolic functions.

TrigToExp [Tanh[x]]

ExpToTrig does the reverse, getting rid of explicit complex numbers whenever possible.
ExpToTrig[%]

Tanh [x]

ExpToTrig deals with hyperbolic as well as circular functions.
ExpToTrig [Exp[x] - Exp[-x]]

2 Sinh[x]

You can also use ExpToTrig on purely numerical expressions.
ExpToTrig[(-1) ~(1/17)]

Tt T
Cos[—} + 1 Sin[—}

17 17
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Expressions Involving Complex Variables

Mathematica usually pays no attention to whether variables like x stand for real or complex
numbers. Sometimes, however, you may want to make transformations which are appropriate

only if particular variables are assumed to be either real or complex.

The function ComplexExpand expands out algebraic and trigonometric expressions, making

definite assumptions about the variables that appear.

ComplexExpand [expr] expand expr assuming that all variables are real

ComplexExpand [expr, {x1,X3,...}]
expand expr assuming that the x; are complex

Expanding complex expressions.

This expands the expression, assuming that x and y are both real.
ComplexExpand[Tan[x + I y]]
Sin[2 x] i Sinh[2y]

+
Cos[2x] +Cosh[2y] Cos[2x] + Cosh[2y]

In this case, a is assumed to be real, but x is assumed to be complex, and is broken into
explicit real and imaginary parts.
ComplexExpand[a +x"2, {x}]

a-Im[x]?+21Im[x]Re[x] +Re[x]?

With several complex variables, you quickly get quite complicated results.
ComplexExpand[Sin[x] Exp[y], {x, Y}]
e®l¥) cos[Im[y]] Cosh[Im[x]] Sin[Re[x]] - e®®¥) Cos[Re[x]] Sin[Im[y]] Sinh[Im[x]] +
i (e Cosh[Im[x]] Sin[Im[y]] Sin[Re[x]] + ") Cos[Im[y]] Cos[Re([x]] Sinh[Im[x]])
There are several ways to write a complex variable z in terms of real parameters. As above, for
example, z can be written in the "Cartesian form" Re[z] + I Im[z]. But it can equally well be

written in the "polar form" Abs [z] Exp[I Arg[z]].

The option TargetFunctions in ComplexExpand allows you to specify how complex variables
should be written. TargetFunctions can be set to a list of functions from the set
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{Re, Im, Abs, Arg, Conjugate, Sign}. ComplexExpand Wwill try to give results in terms of
whichever of these functions you request. The default is typically to give results in terms of Re

and Im.

This gives an expansion in Cartesian form.
ComplexExpand[Re[z"~2], {z}]

—Im[z]2+Re[z]2

Here is an expansion in polar form.
ComplexExpand[Re[z " 2], {z}, TargetFunctions -> {Abs, Arg}]

Abs[z]% Cos[Arg[z]]? - Abs[z]? Sin[Arg[z]]?

Here is another form of expansion.
ComplexExpand[Re[z " 2], {2z}, TargetFunctions -> Conjugate]

z?  Conjugate[z]?
T

2 2

Logical and Piecewise Functions

Nested logical and piecewise functions can be expanded out much like nested arithmetic func-

tions. You can do this using LogicalExpand and PiecewiseExpand.

LogicalExpand [expr] expand out logical functions in expr

PiecewiseExpand [expr] expand out piecewise functions in expr

PiecewiseExpand [expr,assum] expand out with the specified assumptions

Expanding out logical and piecewise functions.

LogicalExpand puts logical expressions into a standard disjunctive normal form (DNF), consist-
ing of an OR of ANDs.

By default, Mathematica leaves this expression unchanged.

(a|]| b) && c

(a|]b) &&c
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LogicalExpand expands this into an OR of ANDs.
LogicalExpand[%]

(a&&c) || (b&&c)

LogicalExpand works on all logical functions, always converting them into a standard OR of

ANDs form. Sometimes the results are inevitably quite large.

Xor can be expressed as an OR of ANDs.
LogicalExpand[Xor[a, b, c]]

(ass&bssc) || (as&!bsa&!lc) || (ba&!as&&!c) || (c&& ! a&& ! b)

Any collection of nested conditionals can always in effect be flattened into a piecewise normal
form consisting of a single Piecewise object. You can do this in Mathematica using

PiecewiseExpand.

By default, Mathematica leaves this expression unchanged.
If[x>0, If[x< 1, a, b], c]

If[x>0, If(x<1, a, b], c]

PiecewiseExpand flattens it into a single Piecewise object.
PiecewiseExpand[%]

a 0<x<l
b x=1
c True

Functions like Max and Abs, as well as Clip and UnitStep, implicitly involve conditionals, and
combinations of them can again be reduced to a single Piecewise object using

PiecewiseExpand.

This gives a result as a single Piecewise object.

PiecewiseExpand[Max[Min[a, b], c]]

b a-b>0&&b-c>0

a a-c>0&&a-b=<0
c True

With x assumed real, this can also be written as a Piecewise object.
PiecewiseExpand[Abs[x], x € Reals]

{—x x<0
X True
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Functions like Floor, Mod and FractionalPart can also be expressed in terms of Piecewise

objects, though in principle they can involve an infinite number of cases.

Without a bound on x, this would yield an infinite nhumber of cases.

PiecewiseExpand[Floor[x"~2], 0 < x < 2]

1 1l=x<V2
2 V2 =x<V3
3 x=2vV3

Mathematica by default limits the number of cases that Mathematica will explicitly generate in
the expansion of any single piecewise function such as Floor at any stage in a computation.

You can change this limit by resetting the value of sMaxPiecewiseCases.

Simplification
Simplify [expr] try various algebraic and trigonometric transformations to
simplify an expression
FullSimplify [expr] try a much wider range of transformations

Simplifying expressions.

Mathematica does not automatically simplify an algebraic expression like this.
(1-x)/(1-%x"2)

1-x

1-x2

Simplify performs the simplification.
Simplify[%]

1

1+x

Simplify performs standard algebraic and trigonometric simplifications.
Simplify[Sin[x] *2 + Cos[x] " 2]

1
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It does not, however, do more sophisticated transformations that involve, for example, special
functions.
Simplify[Gamma[l +n] / n]

Gamma [l + n]

n

FullSimplify does perform such transformations.
FullSimplify[%]

Gamma [n]

FullSimplify [expr, ExcludedForms - >pattern}

try to simplify expr, without touching subexpressions that
match pattern

Controlling simplification.

Here is an expression involving trigonometric functions and square roots.
t = (1-Sin[x] "2) Sqrt[Expand[ (1 + Sqrt[2]) ~20]]

Jzz 619537 + 15994 428 \/2_ (1-sin[x]?)

By default, FullSimplify will try to simplify everything.
FullSimplify[t]

3363 + 23784/ 2 J Cos [x]?

This makes Fullsimplify avoid simplifying the square roots.
FullSimplify[t, ExcludedForms -> Sqrt[_]]

J22619537+15994428 2 Cos[x]?
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FullSimplify [expr, TimeConstraint—>t]

try to simplify expr, working for at most ¢ seconds on each
transformation

FullSimplify |expr,TransformationFunctions->{fi,f,...}|

use only the functions f; in trying to transform parts of expr

FullSimplify |expr, TransformationFunctions-> {Automatic, fi, fo, ...} ]
use built-in transformations as well as the f;
Simplify [expr, ComplexityFunction—>c]
and FullSimplify[expr,ComplexityFunction—>c]
simplify using ¢ to determine what form is considered

simplest

Further control of simplification.

In both simplify and Fullsimplify there is always an issue of what counts as the "simplest"
form of an expression. You can use the option ComplexityFunction -> ¢ to provide a function
to determine this. The function will be applied to each candidate form of the expression, and
the one that gives the smallest numerical value will be considered simplest.

With its default definition of simplicity, Simplify leaves this unchanged.
Simplify[4 Log[10]]

4Log[10]

This now tries to minimize the number of elements in the expression.
Simplify[4 Log[10], ComplexityFunction -> LeafCount]

Log[10000]

Using Assumptions

Mathematica normally makes as few assumptions as possible about the objects you ask it to
manipulate. This means that the results it gives are as general as possible. But sometimes
these results are considerably more complicated than they would be if more assumptions were

made.
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Refine [expr,assum] refine expr using assumptions
Simplify [expr,assum] simplify with assumptions
FullSimplify [expr,assum] full simplify with assumptions
FunctionExpand [expr, assum] function expand with assumptions

Doing operations with assumptions.

Simplify by default does essentially nothing with this expression.
Simplify[1l/ Sqrt[x] - Sqrt[1l/ x]]

\/Tl
xx

The reason is that its value is quite different for different choices of x.

%/.x->{-3,-2,-1,1, 2, 3}

{7;_1, “iyJ2, 214, 0, 0, o}
3

With the assumption x > 0, Simplify can immediately reduce the expression to 0.
Simplify[1l / Sqrt[x] - Sqrt[1l/x], x > 0]
0

Without making assumptions about x and y, nothing can be done.
FunctionExpand[Log[x y]]

Log[xy]

If x and y are both assumed positive, the log can be expanded.
FunctionExpand[Log[xy], x > 0&&y > 0]

Log[x] + Logly]

By applying simplify and FullSimplify with appropriate assumptions to equations and
inequalities you can in effect establish a vast range of theorems.

Without making assumptions about x the truth or falsity of this equation cannot be determined.
Simplify[Abs[x] == x]
X == Abs [x]
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Now Simplify can prove that the equation is true.
Simplify[Abs[x] == x, x > 0]

True

This establishes the standard result that the arithmetic mean is larger than the geometric one.
Simplify[(x+y) /2 >= Sqrt[xy], x >= 0&&y >= 0]

True

This proves that erf(x) lies in the range (0, 1) for all positive arguments.
FullSimplify[O0 < Erf[x] <1, x > 0]

True

Simplify and FullSimplify always try to find the simplest forms of expressions. Sometimes,
however, you may just want Mathematica to follow its ordinary evaluation process, but with
certain assumptions made. You can do this using Refine. The way it works is that
Refine [expr, assum] performs the same transformations as Mathematica would perform automat-

ically if the variables in expr were replaced by numerical expressions satisfying the assumptions

assumt.

There is no simpler form that Simplify can find.
Simplify[Log[x], x < 0]

Log[x]

Refine just evaluates Log[x] as it would for any explicit negative number x.
Refine[Log[x], x < 0]

i+ Log[-x]

An important class of assumptions is those which assert that some object is an element of a
particular domain. You can set up such assumptions using x € dom, where the e character can

be entered as :el: or \ [Element].

xe€dom or Element [x,dom] assert that x is an element of the domain dom
{x1,%,...} edom assert that all the x; are elements of the domain dom
pattedom assert that any expression which matches patt is an ele-

ment of the domain dom

Asserting that objects are elements of domains.
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This confirms that 7 is an element of the domain of real numbers.
Pi € Reals

True

These numbers are all elements of the domain of algebraic numbers.
{1, sqrt[2], 3 +Sqrt[5]} € Algebraics

True

Mathematica knows that « is not an algebraic number.
Pi € Algebraics

False

Current mathematics has not established whether ¢ + 7 is an algebraic number or not.
E +Pi € Algebraics

e + 71 € Algebraics

This represents the assertion that the symbol x is an element of the domain of real nhumbers.

x € Reals

x € Reals
Complexes the domain of complex numbers C

Reals the domain of real numbers R

Algebraics the domain of algebraic numbers A
Rationals the domain of rational numbers Q

Integers the domain of integers Z

Primes the domain of primes P

Booleans the domain of Booleans (True and False) B

Domains supported by Mathematica.

If n is assumed to be an integer, sin(nr) is zero.
Simplify[Sin[nPi], n € Integers]
0
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This establishes the theorem cosh(x) = 1 if x is assumed to be a real number.
Simplify[Cosh[x] >= 1, x € Reals]

True

If you say that a variable satisfies an inequality, Mathematica will automatically assume that it
is real.
Simplify[x € Reals, x > 0]

True

By using Simplify, FullSimplify and FunctionExpand with assumptions you can access

many of Mathematica's vast collection of mathematical facts.

This uses the periodicity of the tangent function.
Simplify[Tan[x + Pi k], k € Integers]

Tan [x]

The assumption k /2 € Integers implies that k must be even.
Simplify[Tan[x+Pik /2], k/2 € Integers]

Tan[x]

Mathematica knows that log(x) < exp(x) for positive x.
Simplify[Log[x] < Exp[x], x > 0]

True

FullsSimplify accesses knowledge about special functions.
FullSimplify[Im[BesselJ[0, x]], x € Reals]

0

Mathematica knows about discrete mathematics and number theory as well as continuous

mathematics.

This uses Wilson's theorem to simplify the result.
FunctionExpand[Mod[(p-1)!, p], p € Primes]

-l1+p
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This uses the multiplicative property of the Euler phi function.
FunctionExpand[EulerPhi[mn], {m, n} € Integers && GCD[m, n] == 1]

EulerPhi[m] EulerPhi [n]

In something like Simplify [expr, assum] Or Refine [expr, assum] you explicitly give the assump-
tions you want to use. But sometimes you may want to specify one set of assumptions to use in

a whole collection of operations. You can do this by using Assuming.

Assuming [assum , expr] use assumptions assum in the evaluation of expr

$Assumptions the default assumptions to use

Specifying assumptions with larger scopes.

This tells Simplify to use the default assumption x > 0.
Assuming[x > 0, Simplify[Sqrt[x~2]]]

X

This combines the two assumptions given.
Assuming[x > 0, Assuming[x € Integers, Refine[Floor[Sqrt[x"2]]]]]

X

Functions like simplify and Refine take the option Assumptions, which specifies what default
assumptions they should use. By default, the setting for this option s
Assumptions :> $Assumptions. The way Assuming then works is to assign a local value to

$Assumptions, much as in Block.

In addition to simplify and Refine, a number of other functions take Assumptions options,
and thus can have assumptions specified for them by Assuming. Examples are

FunctionExpand, Integrate, Limit, Series, LaplaceTransform.

The assumption is automatically used in Integrate.
Assuming[n > 0, 1 + Integrate[x"n, {x, 0, 1}] " 2]

1

1+
(1+n)?
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Manipulating Equations and Inequalities

Equations

"Defining Variables" discussed assignments such as x = y which set x equal to y. Here we discuss

equations, which test equality. The equation x == y tests whether x is equal to y.

This tests whether 2 + 2 and 4 are equal. The result is the symbol True.
2+2-==

True

It is very important that you do not confuse x = y with x == y. While x = y is an imperative state-
ment that actually causes an assignment to be done, x == y merely tests whether x and y are
equal, and causes no explicit action. If you have used the C programming language, you will

recognize that the notation for assignment and testing in Mathematica is the same as in C.

x=y assigns x to have value y

X==y tests whether x and y are equal

Assighments and tests.

This assigns x to have value 4.
x=4

4

If you ask for x, you now get 4.
X

4

This tests whether x is equal to 4. In this case, it is.
X ==

True
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x is equal to 4, not 6.
X ==

False

This removes the value assigned to x.
X=.
The tests we have used so far involve only humbers, and always give a definite answer, either

True Or False. You can also do tests on symbolic expressions.

Mathematica cannot get a definite result for this test unless you give x a specific numerical
value.
X ==

X ==

If you replace x by the specific numerical value 4, the test gives False.

%/.x->4

False

Even when you do tests on symbolic expressions, there are some cases where you can get
definite results. An important one is when you test the equality of two expressions that are
identical. Whatever the numerical values of the variables in these expressions may be, Mathe-

matica knows that the expressions must always be equal.

The two expressions are identical, so the result is True, whatever the value of x may be.
2X+x72==22x+x"2

True

Mathematica does not try to tell whether these expressions are equal. In this case, using
Expand would make them have the same form.

2x+x72 ==x%x (2+xXx)

2x+x2 =% (2+X)

Expressions like x == 4 represent equations in Mathematica. There are many functions in Mathe-

matica for manipulating and solving equations.
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This is an equation in Mathematica. "Solving Equations" discusses how to solve it for x.
x"2+2x-7 ==

7 +2x+x%=0

You can assign a name to the equation.
eqn = %

“7+2x+%x%=0

If you ask for egn, you now get the equation.
eqn

“7+2x+x2=0

Solving Equations

An expression like x~2 +2 x -7 == 0 represents an equation in Mathematica. You will often need

to solve equations like this, to find out for what values of x they are true.

This gives the two solutions to the quadratic equation x> + 2 x — 7 =0. The solutions are given as
replacements for x.
Solve[x"2+2x-7 == 0, x]

Hx—>—1—2\/?}, {Xe—l+2\/?}}

Here are the numerical values of the solutions.
N[%]
{{x—>-3.82843}, {x—>1.82843}}

You can get a list of the actual solutions for x by applying the rules generated by Solve to x
using the replacement operator.

x/.%
(-3.82843, 1.82843}

You can equally well apply the rules to any other expression involving x.
x"2+3x/.%%
{3.17157, 8.82843}
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Solve [lhs==rhs, x] solve an equation, giving a list of rules for x
x/ «solution use the list of rules to get values for x
expr/ .solution use the list of rules to get values for an expression

Finding and using solutions to equations.

Solve always tries to give you explicit formulas for the solutions to equations. However, it is a
basic mathematical result that, for sufficiently complicated equations, explicit algebraic formu-
las in terms of radicals cannot be given. If you have an algebraic equation in one variable, and
the highest power of the variable is at most four, then Mathematica can always give you formu-
las for the solutions. However, if the highest power is five or more, it may be mathematically

impossible to give explicit algebraic formulas for all the solutions.

Mathematica can always solve algebraic equations in one variable when the highest power is
less than five.

Solve[x"4-5%x"2-3 ==0, x]

R e N N T I

It can solve some equations that involve higher powers.

N | =

SREN

Solve[x"6 == 1, x]

[(x>-1}, (x>1), {x->- (-1}, (x> (-1}, {x>-(-1)¥?), (x> (-1)??}}

There are some equations, however, for which it is mathematically impossible to find explicit
formulas for the solutions. Mathematica uses Root objects to represent the solutions in this
case.

Solve[2-4x+x"5 ==0, x]

{{x>Root[2-4ul+n1%&, 1]}, {x>Root[2-4nl+ul’s, 2]},
{x>Root[2-4nl+nl®s&, 3|}, {x>Root[2-4nl+nl®s&, 4]}, {x>Root[2-4nl+nl®s&, 5]}}

Even though you cannot get explicit formulas, you can still evaluate the solutions numerically.
N[%]
{{x->-1.51851}, {x—->0.508499}, {x—>1.2436}, {x—>-0.116792 -1.438451}, {x—>-0.116792 + 1.438451}}

In addition to being able to solve purely algebraic equations, Mathematica can also solve some

equations involving other functions.
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After printing a warning, Mathematica returns one solution to this equation.

Solve[Sin[x] == a, X]

>

{{x > ArcSin[a]}}

It is important to realize that an equation such as sin(x) =a actually has an infinite number of
possible solutions, in this case differing by multiples of 27. However, solve by default returns
just one solution, but prints a message telling you that other solutions may exist. You can use

Reduce to get more information.

There is no explicit "closed form" solution for a transcendental equation like this.

Solve[Cos[x] == x, X]

>

Solve[Cos[x] =X, X]

You can find an approximate numerical solution using FindRoot, and giving a starting value
for x.
FindRoot [Cos[x] == x, {x, 0}]

{x—0.739085}

Solve can also handle equations involving symbolic functions. In such cases, it again prints a

warning, then gives results in terms of formal inverse functions.

Mathematica returns a result in terms of the formal inverse function of £.
Solve[f[x"2] == a, x]

>

(feo e ) e )
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Solve [ {lhsi==rhsy,lhsy==rhsy, ...} , {x,y,...}]
solve a set of simultaneous equations for x, y, ...

Solving sets of simultaneous equations.

You can also use Mathematica to solve sets of simultaneous equations. You simply give the list

of equations, and specify the list of variables to solve for.

Here is a list of two simultaneous equations, to be solved for the variables x and y.
Solve[{ax+y==0,2x+ (1-a)y==1}, {x, v}]

Here are some more complicated simultaneous equations. The two solutions are given as two
lists of replacements for x and y.

Solve[{x"2+y"2==1, x+3y ==0}, {x, v}]

(fx--

3 1 3 1

R Y
10 VTR \10 V10

This uses the solutions to evaluate the expression x +y.

X+y/.%

SN

Mathematica can solve any set of simultaneous /linear or polynomial equations.

When you are working with sets of equations in several variables, it is often convenient to

reorganize the equations by eliminating some variables between them.

This eliminates y between the two equations, giving a single equation for x.
Eliminate[{ax+y==0, 2x+ (1-a)y==1}, y]

(2—a+a2)x::l

If you have several equations, there is no guarantee that there exists any consistent solution

for a particular variable.
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There is no consistent solution to these equations, so Mathematica returns {}, indicating that
the set of solutions is empty.

Solve[{x == 1, x == 2}, x]
{}

There is also no consistent solution to these equations for almost all values of a.
Solve[{x ==1, x == a}, x]

{

The general question of whether a set of equations has any consistent solution is quite a subtle
one. For example, for most values of a, the equations {x ==1, x == a} are inconsistent, so
there is no possible solution for x. However, if a is equal to 1, then the equations do have a
solution. solve is set up to give you generic solutions to equations. It discards any solutions

that exist only when special constraints between parameters are satisfied.

If you use Reduce instead of solve, Mathematica will however keep all the possible solutions to

a set of equations, including those that require special conditions on parameters.

This shows that the equations have a solution only when a == 1. The notationa == 1 &&x ==1
represents the requirement that both a == 1 and x == 1 should be True.
Reduce[{x == a, x == 1}, x]

a==1&&x==1

This gives the complete set of possible solutions to the equation. The answer is stated in terms
of a combination of simpler equations. && indicates equations that must simultaneously be true;
| | indicates alternatives.
Reduce[ax -b == 0, x]

b

a+0&&x= —
a

(b==0&&a=0) ||

This gives a more complicated combination of equations.

Reduce[ax"2-b == 0, x]

Vb Vb

(b==08&8&a=0) || |a#0&& |R=-— || x= ——

a a

This gives a symbolic representation of all solutions.
Reduce[Sin[x] == a, x]

C[1l] € Integers && (x =1 - ArcSin[a] + 2 1C[1l] || x=ArcSin[a] +2C[1])
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Solve [lhs==rhs, x] solve an equation for x
Solve [ {lhs\==rhsy ,lhsy==rhsy,...} ; {x,y,...}]
solve a set of simultaneous equations for x, y, ...
Eliminate [ {lhs\==rhs; ,lhsy==rhsy,...} , {x,...}]
eliminate x, ... in a set of simultaneous equations
Reduce [ {lhs|==rhs| ,lhsy==rhsy, ...} , {x,y,...}]
give a set of simplified equations, including all possible
solutions

Functions for solving and manipulating equations.

Reduce also has powerful capabilities for handling equations specifically over real numbers or

integers. "Equations and Inequalities over Domains" discusses this in more detail.

This reduces the equation assuming x and y are complex.

Reduce[x"2+y"2 ==1, y]

y=J1-x* [|y=+1-x

This includes the conditions for x and y to be real.

Reduce[x"2+y"~2 ==1, y, Reals]

“lex<lss [y:-muy:m)

This gives only the integer solutions.
Reduce[x"2+y"~2 ==1, y, Integers]

(x=-1&&y=0) || (x=0&&y=-1) || (x=0&&y=1) || (x=1&&y=0)

The Representation of Equations and Solutions

Mathematica treats equations as logical statements. If you type in an equation like
x"2+ 3 x == 2, Mathematica interprets this as a logical statement which asserts that x*2+3 x is
equal to 2. If you have assigned an explicit value to x, say x = 4, then Mathematica can explic-

itly determine that the logical statement x*2 + 3 x == 2 is False.

If you have not assigned any explicit value to x, however, Mathematica cannot work out
whether x*2 + 3 x == 2 is True or False. As a result, it leaves the equation in the symbolic form

Xx"2+3x==2.
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You can manipulate symbolic equations in Mathematica in many ways. One common goal is to

rearrange the equations so as to "solve" for a particular set of variables.

Here is a symbolic equation.
x"2+3x==2

3x+ %2 =

You can use the function Reduce to reduce the equation so as to give "solutions" for x. The
result, like the original equation, can be viewed as a logical statement.

Reduce[%, x]

R ..x:%(,hﬁ)

2

The quadratic equation x~2 +3 x == 2 can be thought of as an implicit statement about the
value of x. As shown in the example above, you can use the function Reduce to get a more
explicit statement about the value of x. The expression produced by Reduce has the form
x ==r; | | X ==r,. This expression is again a logical statement, which asserts that either x is equal
to r;, or x is equal to r,. The values of x that are consistent with this statement are exactly the
same as the ones that are consistent with the original quadratic equation. For many purposes,

however, the form that rReduce gives is much more useful than the original equation.

You can combine and manipulate equations just like other logical statements. You can use
logical connectives such as || and && to specify alternative or simultaneous conditions. You can
use functions like LogicalExpand, as well as Fullsimplify, to simplify collections of equa-

tions.

For many purposes, you will find it convenient to manipulate equations simply as logical state-
ments. Sometimes, however, you will actually want to use explicit solutions to equations in
other calculations. In such cases, it is convenient to convert equations that are stated in the
form (hs == rhs into transformation rules of the form Ilas -> rhs. Once you have the solutions to an
equation in the form of explicit transformation rules, you can substitute the solutions into

expressions by using the /. operator.

Reduce produces a logical statement about the values of x corresponding to the roots of the
quadratic equation.

Reduce[x"2 + 3 x == 2, X]
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ToRules converts the logical statement into an explicit list of transformation rules.

{ToRules[%] }

You can now use the transformation rules to substitute the solutions for x into expressions
involving x.
x"2+ax/.%

The function Solve produces transformation rules for solutions directly.

Solve[x"2+3x == 2, x]

({2 [N ] {2 (3017 ]}

2

Equations in One Variable

The main equations that solve and related Mathematica functions deal with are polynomial

equations.

It is easy to solve a linear equation in x.

Solve[ax +b == c, x]

{fx>—1

-b+c

a

One can also solve quadratic equations just by applying a simple formula.
Solve[x"2+ax+2 ==0, x]

~a-1\/-8+a’

1

b g

2

1

{{Xﬁf —a+\/-8+a?
2

})

Mathematica can also find exact solutions to cubic equations. Here is the first solution to a
comparatively simple cubic equation.
Solve[x"3+34x+1==0, x][[1]]

V(L (e wvaTias |)

+

2

3 (-9 /471729 )

{xa _34 o
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For cubic and quartic equations the results are often complicated, but for all equations with

degrees up to four Mathematica is always able to give explicit formulas for the solutions.

An important feature of these formulas is that they involve only radicals: arithmetic combina-

tions of square roots, cube roots and higher roots.

It is a fundamental mathematical fact, however, that for equations of degree five or higher, it is

no longer possible in general to give explicit formulas for solutions in terms of radicals.

There are some specific equations for which this is still possible, but in the vast majority of

cases it is not.

This constructs a degree six polynomial.
Expand[Product[x"~2-21i, {i, 3}]]

-48 + 44 x% - 12x* + x°

For a polynomial that factors in the way this one does, it is straightforward for Solve to find
the roots.

Solve[% == 0, x]

O U Sy STy N

This constructs a polynomial of degree eight.
Expand[x"2-2/.x->%x"2-3/.x->%x"2-5]

482 - 440 x? + 144 x* - 20 %% + x°

The polynomial does not factor, but it can be decomposed into nested polynomials, so Solve
can again find explicit formulas for the roots.

Solve([% == 0,

\/ F W,m/ T \/ W

3*\/7 3+\/7 3+

xef
xe—

q

4‘

Root [f, k] the k™ root of the equation f[x]

Il
Il
o

Implicit representation for roots.
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No explicit formulas for the solution to this equation can be given in terms of radicals, so
Mathematica uses an implicit symbolic representation.

Solve[x"5-x+11 ==0, x]

{{x>Root[11 -1 +n1%&, 1]}, {x>Root[11 -l +u1%&, 2]},
{x>Root[11-#1+#1°&, 3]}, {x>Root[11-11+#1°&, 4]}, {x>Root[11-nl+u1®s, 5]}}

This finds a numerical approximation to each root.
N[%]

{{x—>-1.66149}, {x—-0.46194 - 1.5651},
{x—>-0.46194 + 1.5651}, {x—>1.29268 - 0.903032 1}, {x— 1.29268 + 0.9030321}}

If what you want in the end is a numerical solution, it is usually much faster to use NSolve
from the outset.

NSolve[x"5-x+11 == 0, x]

({x>-1.66149}, {x—> -0.46194 - 1.5651},
(x> -0.46194 + 1.5651}, {x—1.29268 - 0.903032 1}, {x— 1.29268 + 0.9030321}}

Root objects provide an exact, though implicit, representation for the roots of a polynomial.

You can work with them much as you would work with sqrt[2] or any other expression that

represents an exact numerical quantity.

Here is the Root object representing the first root of the polynomial discussed above.
r =Root[#H"5-#+11 &, 1]

Root [11 - 11 + #1° &, 1]

This is a numerical approximation to its value.
N[r]
-1.66149

Round does an exact computation to find the closest integer to the root.
Round [r]

-2

If you substitute the root into the original polynomial, and then simplify the result, you get
zero.

FullSimplify[x"5-x+11 /. x ->r]
0
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This finds the product of all the roots of the original polynomial.
FullSimplify[Product[Root[11l -#+H#"5 &, k], {k, 5}]]

-11

The complex conjugate of the third root is the second root.
Conjugate[Root[1l -#H+H"5 &, 3]]

Root[11 - 11 + #1° &, 2|

If the only symbolic parameter that exists in an equation is the variable that you are solving
for, then all the solutions to the equation will just be numbers. But if there are other symbolic
parameters in the equation, then the solutions will typically be functions of these parameters.

The solution to this equation can again be represented by Root objects, but now each Root
object involves the parameter a.

Solve[x"5+x+a ==0, x]

{{xeRoot[a+nl+t&15&, 1”, {x—>Root[a+I¢l+H15&, 2”,
{xaRoot[a+lI1+1:t15&, 3}}, {XﬁROOt[a+ﬂ1+Hls&, 4}}, {XﬁROOt[a+ﬂ1+Hls&, 5}}}

When a is replaced with 1, the Root objects can be simplified, and some are given as explicit
radicals.

Simplify[% /. a -> 1]
1
{{xaRoot[l—nlz+nl3&, 1]}, {Xﬁ—fj (4“\/?]},
2
1
{xafj (]i+\/?]}, {xaRoot[l—lﬁlz+Hl3&, 2”, {xeRoot[l—lﬁlz+Hl3&, 3}}}
2

This shows the behavior of the first root as a function of a.
Plot[Root[#"5+H+a &, 1], {a, -2, 2}]
1.0

05

-05

-10

This finds the derivative of the first root with respect to a.
D[Root[#"5+H+a &, 1], a]

1

1+5Root[a+nl+n1%s, 1]°
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If you give Solve any n'"-degree polynomial equation, then it will always return exactly »n solu-
tions, although some of these may be represented by Root objects. If there are degenerate

solutions, then the number of times that each particular solution appears will be equal to its

multiplicity.

Solve gives two identical solutions to this equation.
Solve[(x-1) "2 == 0, x]
{({x=>1}, {x>1}}

Here are the first four solutions to a tenth-degree equation. The solutions come in pairs.
Take[Solve[(x"5-x+11) "2 == 0, x], 4]

x>Root[11-ul+nl’&, 1 x>Root[11-ul+nl’&, 1
{ [ 1 [ o1
{x>Root[11 -nl+m1°&, 2]}, {x>Root[11-nl+ul®s&, 2]}}

Mathematica also knows how to solve equations which are not explicitly in the form of polynomi-

als.

Here is an equation involving square roots.
Solve[Sqrt[x] + Sqrt[l + x] == a, x]
{{=- H

1-2a%+a*

4 a2

And here is one involving logarithms.
Solve[Log[x] + Log[1l - x] == a, x]

(o [raise ) oot (1o aer

2 2

})

So long as it can reduce an equation to some kind of polynomial form, Mathematica will always
be able to represent its solution in terms of Root objects. However, with more general equa-
tions, involving say transcendental functions, there is no systematic way to use rRoot objects, or

even necessarily to find numerical approximations.

Here is a simple transcendental equation for x.
Solve[ArcSin[x] == a, x]

{{x—>Sin[a]}}
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There is no solution to this equation in terms of standard functions.

Solve[Cos[x] == x, x]

Solve[Cos [x] = X, X]

Mathematica can nevertheless find a numerical solution even in this case.
FindRoot [Cos[x] == x, {x, 0}]
{x>0.739085}

Polynomial equations in one variable only ever have a finite number of solutions. But transcen-
dental equations often have an infinite number. Typically the reason for this is that functions
like sin in effect have infinitely many possible inverses. With the default option setting
InverseFunctions -> True, Solve will nevertheless assume that there is a definite inverse for
any such function. solve may then be able to return particular solutions in terms of this inverse

function.

Mathematica returns a particular solution in terms of ArcSin, but prints a warning indicating
that other solutions are lost.
Solve[Sin[x] == a, x]

{{x > ArcSin[a]}}

Here the answer comes out in terms of ProductLog.

Solve[Exp[x] +x+1 == 0, x]

{{= -1 - proauctzos - |}

If you ask solve to solve an equation involving an arbitrary function like £, it will by default try

to construct a formal solution in terms of inverse functions.
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Solve by default uses a formal inverse for the function f.
Solve[f[x] == a, x]

((xo (a1))

This is the structure of the inverse function.
InputForm[%]

{{x -> InverseFunction[f, 1, 1][al}}

InverseFunction [ f] the inverse function of f

InverseFunction|[f,k,n] the inverse function of the n-argument function f with

respect to its k" argument

Inverse functions.

This returns an explicit inverse function.
InverseFunction[Tan]

ArcTan

Mathematica can do formal operations on inverse functions.
D[InverseFunction[f] [x"2], x]

2x

ele [

While solve can only give specific solutions to an equation, Reduce can give a representation of

a whole solution set. For transcendental equations, it often ends up introducing new parame-
ters, say with values ranging over all possible integers.

This is a complete representation of the solution set.
Reduce[Sin[x] == a, x]

C[1l] € Integers && (x =77 - ArcSin[a] + 2 1C[1] || x==ArcSin[a] +2nC[1])
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Here again is a representation of the general solution.

Reduce[Exp[x] +x+1 == 0, x]

1
C[1l] € Integers && x = -1 - ProductLog{C[l] ’ 7]

As discussed at more length in "Equations and Inequalities over Domains", Reduce allows you
to restrict the domains of variables. Sometimes this will let you generate definite solutions to

transcendental equations—or show that they do not exist.

With the domain of x restricted, this yields definite solutions.
Reduce[{Sin[x] == 1/ 2, Abs[x] < 4}, x]
77 s 57

x::_inzszxzzi
6

With x constrained to be real, only one solution is possible.
Reduce[Exp[x] +x+1 == 0, x, Reals]
1

x=-1 —ProductLog[—}
e

Reduce knows there can be no solution here.
Reduce[{Sin[x] == x, x > 1}, x]

False

Counting and Isolating Polynomial Roots

Counting Roots of Polynomials

CountRoots [poly, x] give the number of real roots of the polynomial poly in x

CountRoots [ poly, {x,a,b} ] give the number of roots of the polynomial poly in x with
Re(a) < Re(r) < Re(b) A Im(a) < Im(r) < Im(b)

Counting roots of polynomials.
CountRoots accepts polynomials with Gaussian rational coefficients. The root count includes

multiplicities.
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This gives the number of real roots of (x* — 2) (x* - 3) (x* - 4).

CountRoots [ (x2 - 2) (x2 - 3) (x2 - 4) , x]

This counts the roots of (x* - 2) (x> - 3) (x> — 4) in the closed interval [1, 2].

CountRoots[(x2 - 2) (x2 - 3) (x2 - 4) , {x, 1, 2}]
3

The roots of (xz + l)x3 in the vertical axis segment between 0 and 2 i consist of a triple root at 0
and a single root at i.

CountRoots [ (x? + 1) x*, {x, 0, 2i}]
4

This counts 17""-degree roots of unity in the closed unit square.

Couni:Roots[x17 -1, {x,0,1 +J'1}]
5

The coefficients of the polynomial can be Gaussian rationals.
31

CountRoots[x3 -ix+—-1, {x,0, 1+ 1'1.}]
4

1

Isolating Intervals

A set SCcK, where K is R or C, is an isolating set for a root a of a polynomial f if a is the only
root of f in S. Isolating roots of a polynomial means finding disjoint isolating sets for all the

roots of the polynomial.

RootIntervals [ {poly,, poly,,...}] give a list of disjoint isolating intervals for the real roots of
any of the poly;, together with a list of which polynomials

actually have each successive root

RootIntervals [poly] give disjoint isolating intervals for real roots of a single
polynomial
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RootIntervals | polys,Complexes | give disjoint isolating intervals or rectangles for complex
roots of polys

IsolatingInterval [a] give an isolating interval for the algebraic humber a

IsolatingInterval [a,dx] give an isolating interval of width at most dx

Functions for isolating roots of polynomials.

RootIntervals accepts polynomials with rational number coefficients.

For a real root r the returned isolating interval is a pair of rational numbers {a, b}, such that
either a<r<b or a=b=r. For a nonreal root r the isolating rectangle returned is a pair of Gaus-

sian rational numbers {a, b}, such that Re(a) < Re(r) < Re(b) A Im(a) < Im(r) < Im(b) and either Im(a) =0

or Im(b) <0.

Here are isolating intervals for the real roots of f.

f= (x2 - 2) (x2 - 3) (x2 - 4) ; RootIntervals[f]
3 3 3

R T S U B LR LT {z 2}, (2, 23}, (1), (1), (1), (1), (1), (1))

The second list shows which interval contains a root of which polynomial.

RootIntervals[{f+3, £+5, £+7}]
5 9 9 9 9 5

g b g b ooy o 2y {2 )t @i 030, 0300 (200 (1))

This gives isolating intervals for all complex roots of f + 3.

RootIntervals[f + 3, Complexes]

7 7 7 7 7 7
{{{72, -1y, (1, 23, {7777]‘1, 72}, {77, 7Z+7j}, {7;771, ;}, {72, ;+71}},
({1}, {1}, {1}, {1}, {1}, {1}}}

Here are isolating intervals for the third- and fourth-degree roots of unity. The second interval
contains a root common to both polynomials.

Rooi:Interva\ls[{x3 -1, x*- 1} , Complexes]

3 31 3 31 3 31 3 31
{{t-1, -13, 10, 23, {—Z— - —;—T}, {—T v 7},
3 3i 3 31 3 3i 3 3i
{;71 g%} {—E+Tl, 571}} (2}, (1, 2, (1}, (1}, (2}, (2)}}
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Here is an isolating interval for a root of a polynomial of degree seven.
IsolatingInterval[Root[#"7 -11#+ 3 &, 5]]

(-4, 41}

This gives an isolating interval of width at most 1071°.

IsolatingInterval[Root[#"7 -11#+3 &, 5], 10”7 -10]

+ +

866877392461 355978878543 i 3467509569843 5695662056689 1
{- - }
1099511627776 274877906944 4398046511104 4398046511104

All numbers in the interval have the first ten decimal digits in common.

N[%, 10]
{-0.788420396 + 1.295043616 1, -0.788420396 + 1.295043616 1}

Algebraic Numbers

Root [ f, k] the k™ root of the polynomial equation f[x] == 0

The representation of algebraic numbers.

When you enter a Root object, the polynomial that appears in it is automatically reduced to a
minimal form.
Root[24 -2# +4 #"5 &, 1]

Root[12 - 11 +251° &, 1]

This extracts the pure function which represents the polynomial, and applies it to x.
First[%] [x]

12 -x+2%x°

Root objects are the way that Mathematica represents algebraic numbers. Algebraic numbers
have the property that when you perform algebraic operations on them, you always get a single

algebraic number as the result.

Here is the square root of an algebraic number.

Sqrt[Root[2-H+#H"5 &, 1]]

JRoot[Z -8l +71° &, 1]
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RootReduce reduces this to a single Root object.
RootReduce [%]

Root[2 - #1% + 11 &, 6]

Here is a more complicated expression involving an algebraic number.

Sqrt[2] +Root[2-H+H" 5 &, 112

J2 +Root[2-u1+uids, 1)’

Again this can be reduced to a single Root object, albeit a fairly complicated one.
RootReduce [%]

Root[14 - 7211 + 25117 - 144 11% - 88 11 - 8 111° + 62 11° - 14 m1® + 1110 &, 2]

RootReduce [expr] attempt to reduce expr to a single Root object

ToRadicals [expr] attempt to transform Root objects to explicit radicals

Operations on algebraic numbers.

In this simple case the Root object is automatically expressed in terms of radicals.

Root[#"2-#-1&, 1]

)

When cubic polynomials are involved, Root objects are not automatically expressed in terms of
radicals.
Root[#"3 -2 &, 1]

Root [-2 + 1% &, 1]

ToRadicals attempts to express all Root objects in terms of radicals.
ToRadicals [%]

21/3

If solve and ToRadicals do not succeed in expressing the solution to a particular polynomial
equation in terms of radicals, then it is a good guess that this fundamentally cannot be done.
However, you should realize that there are some special cases in which a reduction to radicals

is in principle possible, but Mathematica cannot find it. The simplest example is the equation
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x +20x+32=0, but here the solution in terms of radicals is very complicated. The equation
1 1

2 —9x* —4x3 +27x%>-36x-23 is another example, where now x =25 + 32 is a solution.

This gives a Root object involving a degree-six polynomial.
RootReduce[2” (1/3) +Sqrt[3]]

Root[-23 - 36 11 + 27 11% - 4 11® - 9 n1* + n1° &, 2|

Even though a simple form in terms of radicals does exist, ToRadicals does not find it.

ToRadicals [%]

Root[-23 - 3611 + 27112 - 4 11% - 9 n1* + n1° &, 2]

Beyond degree four, most polynomials do not have roots that can be expressed at all in terms
of radicals. However, for degree five it turns out that the roots can always be expressed in
terms of elliptic or hypergeometric functions. The results, however, are typically much too

complicated to be useful in practice.

RootSum [ f, form] the sum of form[x] for all x satisfying the polynomial
equation f[x] == 0

Normal [expr] the form of expr with RootSum replaced by explicit sums of
Root objects

Sums of roots.

This computes the sum of the reciprocals of the roots of 1 +2 x + x°.
RootSum[ (1 +2#+#"5) &, (1/#) &]

-2

Now no explicit result can be given in terms of radicals.
RootSum[ (1 +2#H+#H"5) &, (HLog[l +#]) &]

RootSum|[1 + 2 #1 + #1° &, Log[1 + H1] #1 &]

This expands the RootSum into an explicit sum involving Root objects.
Normal [%]

Log[l+Root[1l+2#1 +51°&, 1] Root[1+251 +a1%&, 1] +
Log[1l +Root[1+211 +11°&, 2] ] Root[1+211 +11° &, 2|
Log[l+Root[1+2#1 +51°&, 3]] Root[1+251+01%s, 3] +
Log[1l +Root[1+2#1l +11° &, 4] Root[1+21l + 1% &, 4]
[ [ 5] [ 5]

+

+

Log[1l +Root[1+2x1 +#1% &, Root |1 + 21 + 11 &,
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RootApproximant [x] converts the number x to one of the "simplest" algebraic
numbers that approximates it well

RootApproximant [x,n] finds an algebraic number of degree at most n that approxi-
mates x

This recovers V2 from a numerical approximation.
RootApproximant [N[Sqrt[2]]]

J2

In this case, the result has degree at most 4.
RootApproximant [N[Sqrt[2] + Sqrt([3]], 4]

Root[1 - 10#1% +n1% &, 4]

This confirms that the Root expression does correspond to V2 + /3.
RootReduce [Sqrt[2] + Sqrt[3]]

Root[1 - 10#1% +11% &, 4]

Simultaneous Equations

You can give solve a list of simultaneous equations to solve. solve can find explicit solutions

for a large class of simultaneous polynomial equations.

Here is a simple linear equation with two unknowns.

Solve[{ax+by==1, x-y == 2}, {x, y}]

{{xﬁi—l—Zb, y%7—1+2a}}

a+b a+b

Here is a more complicated example. The result is a list of solutions, with each solution consist-
ing of a list of transformation rules for the variables.

Solve[{x"2+y"2==1, x+y ==a}, {x, v}l

_ a2
a-\2-a? a+\/2—a2J}, {x—>i+i,y—>i(a—\/2—a2

2 2 2

1

P Yo -
2

1

((x-
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You can use the list of solutions with the /. operator.
x"3+y*4/.%/.a->0.7

{0.846577, 0.901873}

Even when Solve cannot find explicit solutions, it often can "unwind" simultaneous equations
to produce a symbolic result in terms of Root objects.
First[Solve[{x"2+y"3 ==xy, x+y+xy == 1}, {x, y}]]
1
{x> = (1-Root[1-3n1+m1% 2017+ 2m1% +=1%s, 1]° ~Root[1-3ul+m1% 4201+ 2m1% +11® s, 1]° -
2
Root[1-3ml+m1?+201% + 21 + 1%, 1]4), y-Root[1-3nl+m?+201%+2m1* + 11 s, 1]}

You can then use N to get a numerical result.
N[%]
{x—->-3.4875, y—>-1.80402}

The variables that you use in solve do not need to be single symbols. Often when you set up

large collections of simultaneous equations, you will want to use expressions like a[i] as

variables.

Here is a list of three equations for the a[i].
Table[2 a[i] +a[i-1] == a[i+1], {i, 3}]
{a[0] +2a[1l] =a[2], a[l] +2a[2] =a[3], a[2] +2al[3] =a[4]}

This solves for some of the a[i].
Solve[%, {a[l], a[2], a[3]}]

1 1 1
{{a[l] 5 (-5a[0] +a[4]), a[2] » — (a[0] +a[4]), a[3] » — (-a[0] + 5a[4])}}
12 6 12
Solve [eqns, {x1,X2,...}] solve egns for the specific objects x;
Solve [egns] try to solve egns for all the objects that appear in them

Solving simultaneous equations.

If you do not explicitly specify objects to solve for, Solve will try to solve for all the variables.

Solve[{x+y==1, x-3y == 2}]
5 1}}

{20 yms
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m Solve [ {lhs;==rhsy,lhsy==rhs,, ...} ,vars]
m Solve [lhs|==rhs|&&lhs)==rhs,&&...,vars]

m Solve [ {lhsy,lhsy,...}=={rhs;,rhsy,...} ,vars]

Ways to present simultaneous equations to Solve.

If you construct simultaneous equations from matrices, you typically get equations between
lists of expressions.

{{3, 1}, {2, -5}}.{x, y} == {7, 8}
{3x+y, 2x-5y}= {7, 8}

Solve converts equations involving lists to lists of equations.
Solve[%, {x, y}]

43 10

(o 222

17 17

You can use LogicalExpand to do the conversion explicitly.
LogicalExpand [%%]

2x-5y=-8&&3x+y=17

In some kinds of computations, it is convenient to work with arrays of coefficients instead of

explicit equations. You can construct such arrays from equations by using CoefficientArrays.

Generic and Non-Generic Solutions

If you have an equation like 2x == 0, it is perfectly clear that the only possible solution is
x -> 0. However, if you have an equation like a x == 0, things are not so clear. If a is not equal
to zero, then x -> 0 is again the only solution. However, if a is in fact equal to zero, then any

value of x is a solution. You can see this by using Reduce.

Solve implicitly assumes that the parameter a does not have the special value 0.
Solve[ax == 0, x]

{{x->0}}
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Reduce, on the other hand, gives you all the possibilities, without assuming anything about the
value of a.

Reduce[a x == 0, x]

a=0]]x=0

A basic difference between Reduce and solve is that Reduce gives all the possible solutions to a
set of equations, while solve gives only the generic ones. Solutions are considered "generic" if
they involve conditions only on the variables that you explicitly solve for, and not on other
parameters in the equations. Reduce and solve also differ in that Reduce always returns combi-

nations of equations, while solve gives results in the form of transformation rules.

Solve [egns,vars] find generic solutions to equations

Reduce [egns, vars] reduce equations, maintaining all solutions

Solving equations.

This is the solution to an arbitrary linear equation given by Solve.
Solve[ax +b == 0, x]
b

{f=--21)

a

Reduce gives the full version, which includes the possibility a == b == 0. In reading the output,
note that && has higher precedence than | |.

Reduce[ax +b == 0, x]
b

a+0&&x=-—
a

(b==0&&a=0) ||

Here is the full solution to a general quadratic equation. There are three alternatives. If a is
nonzero, then there are two solutions for x, given by the standard quadratic formula. If a is
zero, however, the equation reduces to a linear one. Finally, if a, b and c are all zero, there is
no restriction on x.

Reduce[ax"2+bx+c == 0, x]
-b-+yb?-4dac -b+yb?-dac
a+06&& [x= || x = N
2a 2a
c
a::O&&b#O&&x::—f] || (c=0&&b=0&&a=0)

b
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When you have several simultaneous equations, Reduce can show you under what conditions

the equations have solutions. solve shows you whether there are any generic solutions.

This shows there can never be any solution to these equations.
Reduce[{x == 1, x == 2}, x]

False

There is a solution to these equations, but only when a has the special value 1.
Reduce[{x == 1, x == a}, x]

a==1&&x==1

The solution is not generic, and is rejected by Solve.
Solve[{x ==1, x == a}, x]

{3

But if a is constrained to have value 1, then Solve again returns a solution.
Solve[{x ==1, x == a, a == 1}, x]

{{x->1}}

This equation is true for any value of x.
Reduce[x == x, X]

True

This is the kind of result Solve returns when you give an equation that is always true.
Solve[x == x, x]

({3}

When you work with systems of linear equations, you can use Solve to get generic solutions,

and Reduce to find out for what values of parameters solutions exist.

Here is a matrix whose i,jth elementis i+ j.
m = Table[i+j, {i, 3}, {j, 3}]
{{2, 3, 4}, {3, 4, 5}, {4, 5, 6}}
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The matrix has determinant zero.
Det [m]
0

This makes a set of three simultaneous equations.
eqn = m.{x, y, z} == {a, b, ¢}

{2x+3y+42z,3x+4y+52, 4x+5y+62z}=1{a, b, c}

Solve reports that there are no generic solutions.
Solve[eqn, {x, vy, z}]
{}

Reduce, however, shows that there would be a solution if the parameters satisfied the special
conditiona == 2b -c.
Reduce[eqn, {x, y, 2}]

a=2b-c&&y=-6b+5c-2x&&z=5b-4c+x

For nonlinear equations, the conditions for the existence of solutions can be much more compli-
cated.

Here is a very simple pair of nonlinear equations.

egqn = {xy==a, x"2y"2 ==Db}

{xy::a, xzyz = }

Solve shows that the equations have no generic solutions.
Solve[eqn, {x, y}]
{}

Reduce gives the complete conditions for a solution to exist.

Reduce[eqn, {x, y}]

(b=0ssa=08&sx=0) ||

(a::—\/;\\a::\/;j &&x;tO&&y::i

X




Mathematics and Algorithms | 119

Eliminating Variables

When you write down a set of simultaneous equations in Mathematica, you are specifying a
collection of constraints between variables. When you use solve, you are finding values for

some of the variables in terms of others, subject to the constraints represented by the

equations.
Solve [egns,vars,elims] find solutions for vars, eliminating the variables elims
Eliminate [egns, elims] rearrange equations to eliminate the variables elims

Eliminating variables.

Here are two equations involving x, y and the "parameters" a and b.
eqn = {x+y==6a+3b, y==9a+2x}
{x+y=6a+3b, y=9a+2x}

If you solve for both x and y, you get results in terms of a and b.
Solve[eqn, {x, y}]
{{x>-a+b, y>7a+2b}}

Similarly, if you solve for x and a, you get results in terms of y and b.
Solve[eqn, {x, a}]
1 1

{{Xﬁ; (9b-vy), aa; (—2b+y)}}

If you only want to solve for x, however, you have to specify whether you want to eliminate y
or a or b. This eliminates y, and so gives the result in terms of a and b.

Solve[eqn, x, y]
{{x>-a+b}}

If you eliminate a, then you get a result in terms of y and b.
Solve[eqn, x, a]
1

({2 00-9))

7
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In some cases, you may want to construct explicitly equations in which variables have been

eliminated. You can do this using Eliminate.

This combines the two equations in the list egn, by eliminating the variable a.
Eliminate[eqn, a]

9b-y=7x

This is what you get if you eliminate y instead of a.
Eliminate[eqn, y]

b-x=a

As a more sophisticated example of Eliminate, consider the problem of writing x° +y’ in terms

of the "symmetric polynomials" x+y and xy.

To solve the problem, we simply have to write £ in terms of a and b, eliminating the original
variables x and y.
Eliminate[{f == x"5+y"5, a==x+y, b==xv}, {x, v}]

f=a’-5a’b+5ab?

In dealing with sets of equations, it is common to consider some of the objects that appear as
true "variables", and others as "parameters". In some cases, you may need to know for what

values of parameters a particular relation between the variables is always satisfied.

SolveAlways [egns,vars] solve for the values of parameters for which the egns are
satisfied for all values of the vars

Solving for parameters that make relations always true.

This finds the values of parameters that make the equation hold for all x.
SolveAlways[a+bx+cx"2 == (1+x) "2, x]

{({a>1,b>2, cs1}}

This equates two series.
Series[aCos[x] +bCos[2 x] +Cos[3 x], {x, 0, 3}] == Series[Cosh[x], {x, 0, 3}]

XZ
x?+0[x]* =1+ — +0[x]*
2

9 a
(l+a+b)+|-—-—-2b
2 2
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This finds values of the undetermined coefficients.
SolveAlways[%, x]
10 10

(fo- 5 5-2)

3 3

Relational and Logical Operators

X==y equal (also input as x == y)

x!l=y unequal (also input as x # y)

x>y greater than

xX>=y greater than or equal to (also input as x > y)
X<y less than

x<=y less than or equal to (also input as x < y)
X==y== all equal

xl=yl=z all unequal (distinct)

x>y>z, etc. strictly decreasing, etc.

Relational operators.

This tests whether 10 is less than 7. The result is False.
10< 7

False

Not all of these humbers are unequal, so this gives False.
31=21=3

False

You can mix < and <-=.
3<5«<=6

True

Since both of the quantities involved are numeric, Mathematica can determine that this is true.
Pi"E<E"Pi

True
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Mathematica does not know whether this is true or false.

X>y
X>y
'p not (also input as -p)
P&&GEE. .. and (also inputas p AgA ...)
pllgl]-.. or (alsoinputaspVvgV...)
Xor([p,q,...] exclusive or (also inputas pv gV ...)
Nand([p,q,...] and Nor([p,q,...]
nand and nor (also input as & and T)
If [p,then,else] give then if p is True, and else if p is False
LogicalExpand [expr] expand out logical expressions

Logical operations.

Both tests give True, so the result is True.
7>48&821!=3

True

You should remember that the logical operations ==, && and || are all double characters in
Mathematica. If you have used a programming language such as C, you will be familiar with

this notation.

Mathematica does not know whether this is true or false.

p&&q
p&&q

Mathematica leaves this expression unchanged.

(Pllq) &&! (r|]s)
(plla)ss! (r|]s)

You can use LogicalExpand to expand out the terms.
LogicalExpand[%]

(p&& ! r&& !'s) || (g&& ! r&& ! s)
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Solving Logical Combinations of Equations

When you give a list of equations to solve, it assumes that you want all the equations to be
satisfied simultaneously. It is also possible to give solve more complicated logical combinations

of equations.

Solve assumes that the equations x +y == 1 and x - y == 2 are simultaneously valid.
Solve[{x+y==1, x-y ==2}, {x, y}]

3 1

X> —, ¥y ——
(RS}
Here is an alternative form, using the logical connective && explicitly.
Solve[x+y==1&&x-y ==2, {x, v}]

3 1

{{x- P Y”*;H

This specifies that either x + y == 1 or x -y == 2. Solve gives two solutions for x, correspond-
ing to these two possibilities.

Solve[x+y==1]|]|x-y ==2, x]

({x=>1-y}, {x=>2+y}}

Solve gives three solutions to this equation.
Solve[x "3 == x, x]

{{x=>-1}, {x=>0}, {x->1}}

If you explicitly include the assertion that x ! = 0, one of the previous solutions is suppressed.
Solve[x"3 == x&&x != 0, x]

{({x=>-1}, {x->1}}

Here is a slightly more complicated example. Note that the precedence of | | is lower than the
precedence of &&, so the equation is interpreted as (x"3 ==x&&x !=1) || x*2 == 2, not
X"3==x&& (x!=1]|%x"2==2).

Solve[x"3 ==x&&x !=1]||x"2 == 2, x]

R N e ey
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When you use solve, the final results you get are in the form of transformation rules. If you
use Reduce Or Eliminate, on the other hand, then your results are logical statements, which

you can manipulate further.

This gives a logical statement representing the solutions of the equation x"*2 == x.
Reduce[x "2 == x, x]

X=0]]x=1

This finds values of x which satisfy x*5 == x but do not satisfy the statement representing the
solutions of x" 2 == x.
Reduce[x "5 == x && ! %, X]

X=-1]|xX=-1]|x=1

The logical statements produced by Reduce can be thought of as representations of the solution

set for your equations. The logical connectives &&, || and so on then correspond to operations

on these sets.

eqns, | | eqns, union of solution sets

eqns,; &&eqns, intersection of solution sets

legns complement of a solution set
Implies [egns, ,eqns,] the part of egns, that contains egns,

Operations on solution sets.
You may often find it convenient to use special notations for logical connectives, as discussed in

"Operators".

The input uses special notations for Implies and Or.
Reduce[x"2==1 > (x==1YV x==-1), x]

True

Inequalities

Just as the equation x~2 + 3 x == 2 asserts that x~2 + 3 x is equal to 2, so also the inequality
x~2+3 x> 2 asserts that x~2 + 3 x is greater than 2. In Mathematica, Reduce works not only on

equations, but also on inequalities.
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Reduce [ {ineq, ,ineq,, ...} ,X] reduce a collection of inequalities in x

Manipulating univariate inequalities.

This pair of inequalities reduces to a single inequality.
Reduce[{0 < x< 2, 1< x< 4}, x]

l<x<2

These inequalities can never simultaneously be satisfied.

Reduce[{x <1, x> 3}, x]

False

When applied to an equation, Reduce [egn, x] tries to get a result consisting of simple equations
for x of the form x ==r;, ... . When applied to an inequality, Reduce [ineq, x] does the exactly
analogous thing, and tries to get a result consisting of simple inequalities for x of the form

l] <X <Fl; wen s

This reduces a quadratic equation to two simple equations for x.

Reduce[x"2 + 3 x == 2, x]

S~ ||x:§(-3+ﬁ)

2

This reduces a quadratic inequality to two simple inequalities for x.

Reduce[x"2 +3 x > 2, x]

x<i(,3,ﬁ) ng(,wﬂ

2

You can think of the result generated by Reduce [ineq, x] as representing a series of intervals,
described by inequalities. Since the graph of a polynomial of degree n can go up and down as

many as n times, a polynomial inequality of degree n can give rise to as many as n/2 + 1 distinct

intervals.

This inequality yields three distinct intervals.
Reduce[(x-1) (x-2) (x-3) (x-4) >0, x]

x<1l||2<x<3||x>4
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The ends of the intervals are at roots and poles.
Reduce[l < (x"2+3x)/ (x+1) <2, x]

—1—\/?<x<—2\\—1+\/?<x<1

Solving this inequality requires introducing ProductLog.

Reduce[x - 2 < Log[x] < x, x]

1 1
—ProductLog{——} <X< —ProductLog[—l, ——}

e? e?

Transcendental functions like sin (x) have graphs that go up and down infinitely many times, so
that infinitely many intervals can be generated.

The second inequality allows only finitely many intervals.
Reduce[{Sin[x] > 0, 0 < x < 20}, x]

O<x<m||27n<x<3nm||4nm<x<5m||6m<x<20

This is how Reduce represents infinitely many intervals.
Reduce[{Sin[x] > 0, O < x}, x]

C[1l] e Integers && (0 <x<m || (C[1] 21&&27C[1l] <x<m+2nC[1l]))

Fairly simple inputs can give fairly complicated results.
Reduce[{Sin[x] *2+Sin[3x] >0, x"2+2 < 20}, x]

_3\/?<x<-nu2ArcTanE [-4-\/7)] <x<2ArcTan[§ (-4+\/7H N
}<x<3ﬁ

s s 1
Ocx<— | 7<X<7rH27T+2ArcTan[f (744/7
2 2 3

If you have inequalities that involve <= as well as <, there may be isolated points where the

inequalities can be satisfied. Reduce represents such points by giving equations.
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This inequality can be satisfied at just two isolated points.
Reduce[(x"2-3x+1) "2 <=0, x]

xzz(a,ﬁ] ||x:§(3+ﬁ)

This yields both intervals and isolated points.
Reduce[{Max[Sin[2 x], Cos[3 x]] <=0, 0 < x< 10}, x]

s 57 37 117 57 177
X=— || —=x=sn|| —=sx=< [ ®x=—1] <=x=<37
2 6 2 6 2 6
Reduce [ {ineq, ,ineq,, ...}, reduce a collection of inequalities in several variables
{xl ;X2 }]

Multivariate inequalities.

For inequalities involving several variables, rReduce in effect yields nested collections of interval

specifications, in which later variables have bounds that depend on earlier variables.

This represents the unit disk as nested inequalities for x and y.
Reduce[x"2+y"2< 1, {x, v}]

“l<x<16&&-\1-x? <y < 1-x?

In geometrical terms, any linear inequality divides space into two halves. Lists of linear inequali-
ties thus define polyhedra, sometimes bounded, sometimes not. Reduce represents such polyhe-
dra in terms of nested inequalities. The corners of the polyhedra always appear among the

endpoints of these inequalities.

This defines a triangular region in the plane.
Reduce[{x >0, y>0, x+y< 1}, {x, y}]

0<x<1l&&0<y<l-x

Even a single triangle may need to be described as two components.
Reduce[{x>y-1,y>0, x+y< 1}, {x, y}]

(-1<x=<0&&0<y<1l+x) || (0<x<1l&&0<y<l1l-x)
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Lists of inequalities in general represent regions of overlap between geometrical objects. Often
the description of these can be quite complicated.

This represents the part of the unit disk on one side of a line.

Reduce[{x"2+y"2<1l, x+3y>2}, {x, v}]

Here is the intersection between two disks.
Reduce[{(x-1)"2+y"2<2,x"2+y"2< 2}, {x, v}]

1 1
[l—x(Z <xs;&&—\/l+2x—x2 <y<\/l+2x—x2] [ ;<x<\/2 &&—\/Z—X2 <y<\/2—x2

If the disks are too far apart, there is no intersection.
Reduce[{(x-4)"2+y"2<2,x"2+y"2< 2}, {x, v}]

False

Here is an example involving a transcendental inequality.
Reduce[{Sin[xy] >1/2, x"2+y"~2<3/2}, {x, v}]

3 1 1 1
- -+ —/81-47% <x<-— 7(9—\/81—47#
2 3

4 12

\/3—2x2 n
&& ——— <y < — | ||
V2 6 x

1 (1 3 1 n V3-2x2
— 7[9*\]81747T2) <x< —+—/81-47° &8 —<y< ——
2 3

4 12 6% Ny

If you have inequalities that involve parameters, Reduce automatically handles the different

cases that can occur, just as it does for equations.

The form of the intervals depends on the value of a.
Reduce[(x-1) (x-a) >0, x]

(azlsa& (x<al|x>1)) || (a>1l&& (x<1 || x>a))
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One gets a hyperbolic or an elliptical region, depending on the value of a.

Reduce[x"2+ay”2< 1, {x, y}]

1-x2 1-x2

ycReals&& ||a<0&& |[x<-1&& |y<- [1y>
1-x? 1-x?

-l<x<1l]|]| |x=1&& |y<- [ly>
a a

1-x? 1-x?
(a==0&&-1<x<1l) || |[a>0&&-1<x<1&& - <y<

a a

Reduce tries to give you a complete description of the region defined by a set of inequalities.
Sometimes, however, you may just want to find individual instances of values of variables that

satisfy the inequalities. You can do this using FindInstance.

FindInstance [ineqs, {xi,X3,...}] try to find an instance of the x; satisfying inegs

FindInstance [inegs,vars,n] try to find n instances

Finding individual points that satisfy inequalities.

This finds a specific instance that satisfies the inequalities.
FindInstance[{Sin[xy] >1/2, x"2+y"2<3/2}, {x, v}]

88 543

()

151

This shows that there is no way to satisfy the inequalities.
FindInstance[{Sin[xy] >1/2, x"2+y"2<1/4}, {x, v}]
()

FindInstance is in some ways an analog for inequalities of solve for equations. For like solve,
it returns a list of rules giving specific values for variables. But while for equations these values
can generically give an accurate representation of all solutions, for inequalities they can only

correspond to isolated sample points within the regions described by the inequalities.

Every time you call FindInstance with specific input, it will give the same output. And when
there are instances that correspond to special, limiting, points of some kind, it will preferentially

return these. But in general, the distribution of instances returned by FindInstance will typi-
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cally seem somewhat random. Each instance is, however, in effect a constructive proof that the

inequalities you have given can in fact be satisfied.

If you ask for one point in the unit disk, FindInstance gives the origin.
FindInstance[x"2+y"2 <=1, {x, y}]
{{x->0, y->0}}

This finds 500 points in the unit disk.
FindInstance[x"2+y~2 <=1, {x, y}, 500];

Their distribution seems somewhat random.
ListPlot[{x, Yy} /. %, AspectRatio -> Automatic]

e b O o,
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Equations and Inequalities over Domains

Mathematica normally assumes that variables which appear in equations can stand for arbitrary
complex numbers. But when you use Reduce, you can explicitly tell Mathematica that the vari-

ables stand for objects in more restricted domains.

Reduce [expr,vars,dom] reduce egns over the domain dom
Complexes complex humbers C

Reals real numbers R

Integers integers Z

Solving over domains.

Reduce by default assumes that x can be complex, and gives all five complex solutions.
Reduce[x"6-x"4-4x"2+4 ==0, x]

X::—l“X::l||X::—’\/?“X::—j_\/?“X::j_’\/?“X::\/?
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But here it assumes that x is real, and gives only the real solutions.
Reduce[x"6-x"4-4x"2+4 ==0, x, Reals]

x::lex::1||x::7\/?Hx::\/?

And here it assumes that x is an integer, and gives only the integer solutions.
Reduce[x"6-x"4-4x"2+4 ==0, x, Integers]

x=-1|]x=1

A single polynomial equation in one variable will always have a finite set of discrete solutions.
And in such a case one can think of Reduce [egns, vars, dom] as just filtering the solutions by

selecting the ones that happen to lie in the domain dom.

But as soon as there are more variables, things can become more complicated, with solutions
to equations corresponding to parametric curves or surfaces in which the values of some vari-
ables can depend on the values of others. Often this dependence can be described by some
collection of equations or inequalities, but the form of these can change significantly when one
goes from one domain to another.

This gives solutions over the complex numbers as simple formulas.

Reduce[x"2+y"2 ==1, {x, y}]

S P T

To represent solutions over the reals requires introducing an inequality.

Reduce[x"2+y"2 ==1, {x, vy}, Reals]

y=-1-x* ||y=+1-x

-l=<x=<1s&&

Over the integers, the solution can be represented as equations for discrete points.
Reduce[x"2+y"2 ==1, {x, v}, Integers]

(x==-16&y=0) || (x=0&&ky=-1) || (x=0&&y=1) || (x=18&8y=0)

If your input involves only equations, then Reduce will by default assume that all variables are
complex. But if your input involves inequalities, then Reduce will assume that any algebraic

variables appearing in them are real, since inequalities can only compare real quantities.
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Since the variables appear in an inequality, they are assumed to be real.
Reduce[{x+y+2z2==1, x"2+y"2+2"2< 1}, {x,v, 2}]

1 1-x 1 1-x 1
-—<x<1la&& - —\1+2x-3%% <y«< +—\V1+2x-3%% s&z=1-x-y
2

3 2 2 2

Complexes polynomial ' = 0, x; == Root [...]
Reals Root[...] <x; <Root[...], x; == Root [...]
Integers arbitrarily complicated

Schematic building blocks for solutions to polynomial equations and inequalities.

For systems of polynomials over real and complex domains, the solutions always consist of a
finite number of components, within which the values of variables are given by algebraic num-

bers or functions.

Here the components are distinguished by equations and inequations on x.
Reduce[xy”"3+y==1, {x, y}, Complexes]

(x=088y=1) ||
(x#0&& (y=Root[-1+81+xu1%&, 1] || y=Root[-1+8l+xu1’&, 2| ||y=Root[-1+#5l+xul’s, 3]))

And here the components are distinguished by inequalities on x.

Reduce[xy"3+y==1, {x, vy}, Reals]

4 4 3 4
X<-—&&y=Root[-1+Hl+xH1>&, 1]| || [x=-—&& |y=-3||y=— H[——<X<O&&
27 2 2 27
(y=Root[-1+ul+xu1’s, 1] || y=Root[-1+#l+xu1’&, 2| ||y=Root[-1+ul+xul’s&, 3])| ||

(Xz0&&y::Root[—1+1:tl+xn13&, 1})

While in principle Reduce can always find the complete solution to any collection of polynomial
equations and inequalities with real or complex variables, the results are often very compli-
cated, with the number of components typically growing exponentially as the number of vari-

ables increases.

With 3 variables, the solution here already involves 8 components.
Reduce[x"2 ==y"2==2"2==1, {x, ¥y, z2}]
(z=-1&&y=-1&&x=-1) || (2==-1&8&y=-1&&x=1) ||

(z=-1&&y=16&&x=-1) || (2=-1&8&y=1&&x=1) || (z2=16&&y=-1&&x==-1) ||
(z=16&8&y=-16&&x==1) || (2==16&&y=16&&X==-1) || (2==1&&y=16&&x=1)
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As soon as one introduces functions like sin or Exp, even equations in single real or complex

variables can have solutions with an infinite number of components. Reduce labels these compo-

th parameter in a given solution

nents by introducing additional parameters. By default, the »
will be named c[n]. In general you can specify that it should be named f[n] by giving the

option setting GeneratedParameters -> f.

The components here are labeled by the integer parameter c;.
Reduce[Exp[x] == 2, x, GeneratedParameters -> (Subscript[c, #] &)]

c; € Integers && x ==Log[2] + 21 C;

Reduce can handle equations not only over real and complex variables, but also over integers.

Solving such Diophantine equations can often be a very difficult problem.

Describing the solution to this equation over the reals is straightforward.
Reduce[xy == 8, {x, y}, Reals]
8

(x<0 || x>0) &&y = —
X

The solution over the integers involves the divisors of 8.
Reduce[xy == 8, {x, vy}, Integers]

(x=-8&8y=-1) [| (x=-46&8y=-2) || (x=-28&y=-4) || (x=-1&y=-8) ||
(x=1s&y=8) || (x=2&&y=4) || (x=4&&y=2) || (x=88&ky=1)

Solving an equation like this effectively requires factoring a large number.
Reduce[{xy ==7777777, x>y >0}, {x, vy}, Integers]

(x==4649 &y =1673) || (x=32543 &8y =239) || (x=1111111&&y=7) || (x=7777777 &&y = 1)

Reduce can solve any system of linear equations or inequalities over the integers. With m linear
equations in n variables, n —m parameters typically need to be introduced. But with inequalities,

a much larger number of parameters may be needed.

Three parameters are needed here, even though there are only two variables.
Reduce[{3x-2y>1, x>0, y>0}, {x, vy}, Integers]
(C[1] | C€[2] | C[3]) € Integers && C[1] = 0 && C[2] = 0

&&
C[3]20&& ((x=2+2C[1] +C[2] +C[3] &y =2+3C[1] +C[2]) ||
(x=2+2C[1] +C[2] +C[3] &&y=1+3C[1] +C[2]))

With two variables, Reduce can solve any quadratic equation over the integers. The result can

be a Fibonacci-like sequence, represented in terms of powers of quadratic irrationals.
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Here is the solution to a Pell equation.

Reduce[{x"2==13y"2+1, x>0, y >0}, {x, y}, Integers]
1 c[1) cl1)
C[1] € Integers && C[1] > 1 && x == — (649— 180+/13 ] + [649 +180+/13 )
2
649 - 180 V13 )Cm - (649 +180+/13 )Cm

213

The actual values for specific C[1] as integers, as they should be.
FullSimplify[% /. Table[{C[1] -> i}, {i, 4}]]

{x =649 &&y == 180, x == 842401 && y = 233 640,
x=-1093435849 &&y = 303264540, x - 1419278889601 && y == 393 637 139 280}

Reduce can handle many specific classes of equations over the integers.

Here Reduce finds the solution to a Thue equation.
Reduce[x”"3-4xy"2+y~3==1, {x, vy}, Integers]

(x=-2&8y=1) || (x=08&&y=1) || (x=1&&y=0) ||
(x=188y=4) || (x=28&8y=1) || (x=5088&y =273)

Changing the right-hand side to 3, the equation now has no solution.
Reduce[x”"3-4xy"2+y~3 ==3, {x, vy}, Integers]

False

Equations over the integers sometimes have seemingly quite random collections of solutions.

And even small changes in equations can often lead them to have no solutions at all.

For polynomial equations over real and complex numbers, there is a definite decision procedure
for determining whether or not any solution exists. But for polynomial equations over the inte-

gers, the unsolvability of Hilbert's tenth problem demonstrates that there can never be any

such general procedure.

For specific classes of equations, however, procedures can be found, and indeed many are
implemented in Reduce. But handling different classes of equations can often seem to require
whole different branches of number theory, and quite different kinds of computations. And in
fact it is known that there are universal integer polynomial equations, for which filling in some
variables can make solutions for other variables correspond to the output of absolutely any
possible program. This then means that for such equations there can never in general be any

closed-form solution built from fixed elements like algebraic functions.

&&
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If one includes functions like sin, then even for equations involving real and complex numbers

the same issues can arise.

Reduce here effectively has to solve an equation over the integers.

Reduce[Sin[Pi x] "2+ Sin[Piy] "2+ (x"2+y~2-25)"2==0, {x, vy}, Reals]

(x=-5&8y=0) || (x==-4&& (y=-3||y=3)) || (x=-3&& (y=-4||y=4)) ||

(x=0&& (y=-5|]y=5)) || (x=38&& (y=-4|]y=4)) || (x=48&& (y=-3||y=3)) || (x=5&&y=0)
Reduce [eqns,vars,Modulus—>n} find solutions modulo n

Handling equations involving integers modulo n.

Since there are only ever a finite number of possible solutions for integer equations modulo #,

Reduce can systematically find them.

This finds all solutions modulo 4.
Reduce[x"5 ==y"4+xy+1, {x, vy}, Modulus -> 4]
(x==16&&y=0) || (x=1&&y=3) || (x=2&&y=1) || (x==2&8&y=3) || (x=3&&y=2) || (x==3&&Yy-=23)

Reduce can also handle equations that involve several different moduli.
Here is an equation involving two different moduli.

Reduce[Mod[2x +1, 5] == Mod[x, 7] && 0 < x < 50, x]

X=4||x=7||x=15|]x=23||x=31]|%x=39 || x=42

Reduce [expr, vars ,dom] specify a default domain for all variables

Reduce [ {expr,,...,xjedom;, ...} ,vars] explicitly specify individual domains for variables

Different ways to specify domains for variables.

This assumes that x is an integer, but y is a real.
Reduce[{x"2+2y"2==1, x € Integers, y € Reals}, {x, y}]
1 1

y=-— |ly= —]] [ (x=18&&y=0)
V2 V2

(x=-1&&y=0) || |x=0&&

Reduce normally treats complex variables as single objects. But in dealing with functions that
are not analytic or have branch cuts, it sometimes has to break them into pairs of real variables

Re[z] and Im[z].
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The result involves separate real and imaginary parts.
Reduce[Abs[z] == 1, z]

-1<Re(z] <1&& [Im[z] =-\1-Re[z]? || Im[z] =V 1-Re[z]?

Here again there is a separate condition on the imaginary part.
Reduce[Log[z] == a, {a, z}]

-n<Im[a] <7 && 2z = €?

Reduce by default assumes that variables that appear algebraically in inequalities are real. But
you can override this by explicitly specifying complexes as the default domain. It is often useful

in such cases to be able to specify that certain variables are still real.

Reduce by default assumes that x is a real.
Reduce[x"2 < 1, x]

-l<x<1

This forces Reduce to consider the case where x can be complex.
Reduce[x"2 < 1, x, Complexes]

(-1<Re[x] <0&&Im[x] =0) || Re[x] =0 || (0<Re[x] <1&&Im[x] =0)

Since x does not appear algebraically, Reduce immediately assumes that it can be complex.
Reduce[Abs [x] < 1, x]

-1<Re[x] <1&&- l—Re[X]2 <Im[x] < 1—Re[x]2

Here x is a real, but y can be complex.
Reduce[{Abs[y] < Abs[x], x € Reals}, {x, y}]

X <0 && -\ x2 <Re[y]<\/x2 &&—\/xz—Re[y]2 <Im[y] < xz—Re[y]ZJ |l
x>0&&—\/x2 <Re[y]<\/x2 &&—x/xz—Re[y]2 <Im[y]<\/x2—Re[y]2]

FindInstance [expr, {Xx|,X;,...} ,dom] try to find an instance of the x; in dom satisfying expr

FindInstance [expr,vars,dom,n] try to find n instances

Complexes the domain of complex numbers C
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Reals the domain of real numbers R
Integers the domain of integers Z
Booleans the domain of Booleans (True and False) B

Finding particular solutions in domains.

Reduce always returns a complete representation of the solution to a system of equations or
inequalities. Sometimes, however, you may just want to find particular sample solutions. You

can do this using FindInstance.

If FindInstance [expr, vars, dom] returns {} then this means that Mathematica has effectively
proved that expr cannot be satisfied for any values of variables in the specified domain. When
expr can be satisfied, FindInstance will nhormally pick quite arbitrarily among values that do
this, as discussed for inequalities in "Inequalities: Manipulating Equations and Inequalities".

Particularly for integer equations, FindInstance can often find particular solutions to equations
even when Reduce cannot find a complete solution. In such cases it usually returns one of the

smallest solutions to the equations.

This finds the smallest integer point on an elliptic curve.
FindInstance[{x"2 ==y"3+12, x>0, y> 0}, {x, vy}, Integers]
{{x>47, y—>13}}

One feature of FindInstance is that it also works with Boolean expressions whose variables
can have values True or False. You can use FindInstance to determine whether a particular
expression is satisfiable, so that there is some choice of truth values for its variables that

makes the expression True.

This expression cannot be satisfied for any choice of p and g.

FindInstance[p && ! (p || !q), {pP, 9}, Booleans]
{}

But this can.

FindInstance[p&&! (!p || 'q), {p, 9}, Booleans]

{{p > True, q - True}}
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The Representation of Solution Sets

Any combination of equations or inequalities can be thought of as implicitly defining a region in
some kind of space. The fundamental function of Reduce is to turn this type of implicit descrip-
tion into an explicit one.

An implicit description in terms of equations or inequalities is sufficient if one just wants to test
whether a point specified by values of variables is in the region. But to understand the structure
of the region, or to generate points in it, one typically needs a more explicit description, of the
kind obtained from Reduce.

Here are inequalities that implicitly define a semicircular region.

semi =x>0&&x"2+y"2<1

x>0&&x2+y2<l

This shows that the point (1/2, 1/2) lies in the region.
semi /. {x->1/2,y->1/2}

True

Reduce gives a more explicit representation of the region.

Reduce[semi, {x, y}]

2

0O<x<l&&-y1-x" <y«< 1-x?

If we pick a value for x consistent with the first inequality, we then immediately get an explicit
inequality for y.

%/.x->1/2

V3 V3

<y<

2

Reduce [expr, {x;, x», ...} ] is set up to describe regions by first giving fixed conditions for x,
then giving conditions for x, that depend on x;, then conditions for x; that depend on x; and x,,
and so on. This structure has the feature that it allows one to pick points by successively choos-
ing values for each of the x; in turn—in much the same way as when one uses iterators in func-

tions like Table.
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This gives a representation for the region in which one first picks a value for y, then x.

Reduce[semi, {y, x}]

-l<y<l&&0<x< 1—y2

In some simple cases the region defined by a system of equations or inequalities will end up
having only one component. In such cases, the output from Reduce will be of the form

e && e; ... Where each of the ¢; is an equation or inequality involving variables up to x;.

In most cases, however, there will be several components, represented by output containing
forms such as u; | | up | | .... Reduce typically tries to minimize the number of components used
in describing a region. But in some cases multiple parametrizations may be needed to cover a
single connected component, and each one of these will appear as a separate component in the

output from Reduce.

In representing solution sets, it is common to find that several components can be described
together by using forms such as ...&& (u; | | u») &&.... Reduce by default does this so as to
return its results as compactly as possible. You can use LogicalExpand to generate an

expanded form in which each component appears separately.

In generating the most compact results, Reduce sometimes ends up making conditions on later
variables x; depend on more of the earlier x; than is strictly necessary. You can force Reduce to
generate results in which a particular x; only has minimal dependence on earlier x; by giving the
option Backsubstitution -> True. Usually this will lead to much larger output, although some-

times it may be easier to interpret.

By default, Reduce expresses the condition on y in terms of x.
Reduce[x"2+y==4&&x"3 -4y ==8, {x, v}]

X=2||x=-3-1+/3 Hx::—3+1‘1xl3)&&y::4—x2

Backsubstituting allows conditions for y to be given without involving x.

Reduce[x"2+y ==4&&x"3 -4y ==8, {x, vy}, Backsubstitution -> True]

we i (353 swy =2 [5eayf3)] 11 (e 313 sey=2i[i03y3)]

(Xx=28&8y=0) ||
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CylindricalDecomposition [expr, {Xx|,X2,...}]

generate the cylindrical algebraic decomposition of the
region defined by expr

GenericCylindricalDecomposition [expr, {x;,x3,...}]

find the full-dimensional part of the decomposition of the
region defined by expr, together with any hypersurfaces
containing the rest of the region

SemialgebraicComponentInstances [expr, {X|,X2,...} ]
give at least one point in each connected component of the
region defined by expr

Cylindrical algebraic decomposition.

For polynomial equations or inequalities over the reals, the structure of the result returned by
Reduce is typically a cylindrical algebraic decomposition or CAD. Sometimes Reduce can yield a
simpler form. But in all cases you can get the complete CAD by using
CylindricalDecomposition. For systems containing inequalities only,

GenericCylindricalDecomposition gives you "most" of the solution set and is often faster.

Here is the cylindrical algebraic decomposition of a region bounded by a hyperbola.

CylindricalDecomposition[x"2-y~2>=1, {x, y}]

x<-18&8&-\-1+x2 sys\/—1+x2) [| (x=-1&&y=0) ||

x>1&&—\/—1+x2 sys\/—1+x2

(x=18&8y=0) ||

This gives the two-dimensional part of the solution set along with a curve containing the
boundary.

GenericCylindricalDecomposition[x"2-y~2 >=1, {x, y}]

{x<—1&&—\/—1+x2 <y<\/—1+x2) ||

x>1&&—\/—l+x2 <y<\/—1+x2 ' 1—x2+y2:: }

This finds solutions from both parts of the solution set.

SemialgebraicComponentInstances[x"2-y"2 >=1, {x, y}]

{{xe—Z, y->-1}, {x->-2,y->1}, {x->-1, y->0}, {x->1, y->0},
(x52,y5-1}, {x>2, y>1}, {xa—\/Z_, ye—l}, {x»—\/?, y»O},
{xe—\/Z_, Yﬁl}, {X‘)\/?, ye—l}, {xe\/Z_, yﬁo}, {X‘)\/?, yel}}



Mathematics and Algorithms | 141

The results include a few points from each piece of the solution set.

Show [
{RegionPlot[x"2-y"~2>=1, {x, -3, 3}, {y, -3, 3}], Graphics[Point[{x, y}] /. %]}]

3 T T T T T =

Quantifiers

In a statement like x~4+x"2 > 0, Mathematica treats the variable x as having a definite,
though unspecified, value. Sometimes, however, it is useful to be able to make statements
about whole collections of possible values for x. You can do this using quantifiers.

ForAll [x,expr] expr holds for all values of x

ForAll [ {x|,xp,...} ,expr] expr holds for all values of all the x;

ForAll [ {xy,xp,...},cond, expr] expr holds for all x; satisfying cond

Exists [x,expr] there exists a value of x for which expr holds

Exists[{x|,Xy,...} ,expr] there exist values of the x; for which expr holds

Exists[{x{,...},cond,expr] there exist values of the x; satisfying cond for which expr
holds

The structure of quantifiers.

You can work with quantifiers in Mathematica much as you work with equations, inequalities or
logical connectives. In most cases, the quantifiers will not immediately be changed by evalua-

tion. But they can be simplified or reduced by functions like Fullsimplify and Reduce.

This asserts that an x exists that makes the inequality true. The output here is just a formatted
version of the input.

Exists[x, x4 +x"2 > 0]

EIXX2+X4>0
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FullSimplify establishes that the assertion is true.
FullSimplify[%]

True

This gives False, since the inequality fails when x is zero.
FullSimplify[ForAll[x, x"4+x"2 > 0]]

False

Mathematica supports a version of the standard notation for quantifiers used in predicate logic
and pure mathematics. You can input ¥ as \[ForAll] or :fa:, and you can input 3 as \[Exists]
or :ex:. To make the notation precise, however, Mathematica makes the quantified variable a

subscript. The conditions on the variable can also be given in the subscript, separated by a

comma.
v xexpr ForAll [x,expr]
VX, %y, ) €XDT ForAll[{xy,xp,...} ,expr]
Yy, cond€Xpr ForAll [x,cond ,expr]
3expr Exists [x,expr]
3ix 5y, €XDT Exists [{x],Xxp,...} ,expr]
3, cond€XPT Exists [x,cond,expr]

Notation for quantifiers.

Given a statement that involves quantifiers, there are certain important cases where it is possi-
ble to resolve it into an equivalent statement in which the quantifiers have been eliminated.
Somewhat like solving an equation, such quantifier elimination turns an implicit statement
about what is true for all x or for some x into an explicit statement about the conditions under
which this holds.

Resolve [expr] attempt to eliminate quantifiers from expr

Resolve [expr,dom] attempt to eliminate quantifiers with all variables assumed
to be in domain dom

Quantifier elimination.
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This shows that an x exists that makes the equation true.
Resolve[Exists[x, x"2 == x"3]]

True

This shows that the equations can only be satisfied if ¢ obeys a certain condition.

Resolve[Exists[x, x"2 ==c&&x"3 ==c+1]]

“1-2c-c?+c¥=0

Resolve can always eliminate quantifiers from any collection of polynomial equations and
inequations over complex numbers, and from any collection of polynomial equations and inequal-
ities over real numbers. It can also eliminate quantifiers from Boolean expressions.

This finds the conditions for a quadratic form over the reals to be positive.

Resolve[ForAll[x, ax”“2+bx+c > 0], Reals]

(a>0&&—ab2+4a2c>0> || (a=0&&b=0&&c>0) || (azO&&b::O&&c>0&&—ab2+4azc>0)

This shows that there is a way of assigning truth values to p and g that makes the expression
true.

Resolve[Exists[{p, 9}, P || 9&& ! q], Booleans]

True

You can also use quantifiers with Reduce. If you give Reduce a collection of equations or inequali-
ties, then it will try to produce a detailed representation of the complete solution set. But some-
times you may want to address a more global question, such as whether the solution set covers
all values of x, or whether it covers none of these values. Quantifiers provide a convenient way
to specify such questions.

This gives the complete structure of the solution set.
Reduce[x"2+x+c ==0, {c, x}, Reals]

1 1 1 1

X=-—-—1/1l-4c ||x=-—+—1/1-4cC
2 2 2

1 1
C= — && X = ——
2

This instead just gives the condition for a solution to exist.

Reduce[Exists[x, x"2+x+c == 0], {c}, Reals]

Q
Iy
| e
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It is possible to formulate a great many mathematical questions in terms of quantifiers.

This finds the conditions for a circle to be contained within an arbitrary conic section.
Reduce[ForAll[{x, vy}, x"2+y"2<1,ax"2+by"2<c], {a, b, ¢}, Reals]

(a<0&& ((b=<0&&c>0) || (b>0&&c=b))) || (a>0&& ((b<a&&c=a) || (bza&kc=b)))

This finds the conditions for a line to intersect a circle.

Reduce[Exists[{x, vy}, x"2+y"2< 1, rx+sy==1], {r, s}, Reals]

r<—l\\(—lsrsl&&(s<—\/l—r2 Hs>\/l—r2 [lr>1

This defines g to be a general monic quartic.

q[x_] :=x"4+bx"3+cx"2+dx+e

This finds the condition for all pairs of roots to the quartic to be equal.
Reduce[ForAll[{x, v}, q[x] == 0&&q[y] == 0, x ==y], {b, ¢, d, e}]
3p? b3 b*

c=——8&d=—&&e=—||| (b=0&&c=06&&d=0&&e=0)
8 16 256

Although quantifier elimination over the integers is in general a computationally impossible

problem, Mathematica can do it in specific cases.

This shows that V2 cannot be a rational number.
Resolve [Exists[{x, Yy}, x"2==2y"2&&y > 0], Integers]

False

v 9/4 is, though.

Resolve[Exists[{x, vy}, 4x"2==9y"2&&y > 0], Integers]

True
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Minimization and Maximization

Minimize [expr, {x;,X2,...}] minimize expr
Minimize [ {expr,cons}, {x;,x3,...}] minimize expr subject to the constraints cons
Maximize [expr, {x|,X2,...}] maximize expr
Maximize [ {expr,cons}, {x1,x2,...} ] maximize expr subject to the constraints cons

Minimization and maximization.

Minimize and Maximize Yield lists giving the value attained at the minimum or maximum,

together with rules specifying where the minimum or maximum occurs.

This finds the minimum of a quadratic function.
Minimize[x"2-3x+6, x]

(2

4 2

Applying the rule for x gives the value at the minimum.
x"2-3%x+6 /. Last[%]
15

4

This maximizes with respect to x and y.

Maximize[S5xy-x"4-y"4, {x, y}]

25 Vs Vs

{;' {“*7' Y**?H

Minimize [expr, x] minimizes expr allowing x to range over all possible values from - t0 +co.
Minimize [ {expr, cons}, x] minimizes expr subject to the constraints cons being satisfied. The

constraints can consist of any combination of equations and inequalities.

This finds the minimum subject to the constraint x = 3.
Minimize[{x"2-3x+6, x >= 3}, x]

{6, {x>3}}
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This finds the maximum within the unit circle.
Maximize[{5xy-x"4-y 4, x"2+y"2<=1}, {x, y}]

1 1

(o eyt

V2 V2

This finds the maximum within an ellipse. The result is fairly complicated.
Maximize[{S5xy-x"4-y"4, x"2+2y"2<=1}, {x, v}]

{-Root[-811219 + 320160 #1 + 274 624 #1? - 170240 #1° + 25600 1% &, 1],
{x > Root[25 - 102m1% + 122m1* - 70 1° + 50 m1% &, 2],
y > Root [25 - 264 111% + 848 1% - 1040 #1° + 800 1% &, 1]}}

This finds the maximum along a line.
Maximize[{S5xy-x"4-y"4, x+y == 1}, {x, v}]
9 1 1

N )

8 2 2

Minimize and Maximize can solve any linear programming problem in which both the objective

function expr and the constraints cons involve the variables x; only linearly.

Here is a typical linear programming problem.
Minimize[{x+3y, x-3y<=7&&x+2y >=10}, {x, y}]
53 44 3

|

5 5 5

They can also in principle solve any polynomial programming problem in which the objective
function and the constraints involve arbitrary polynomial functions of the variables. There are

many important geometrical and other problems that can be formulated in this way.

This solves the simple geometrical problem of maximizing the area of a rectangle with fixed
perimeter.
Maximize[{xy, x+y == 1}, {x, y}]

1 1 1

(ol dev=2)

4 2 2

This finds the maximal volume of a cuboid that fits inside the unit sphere.

Maximize[{8xyz, x"2+y"2+2"2 <=1}, {x, vy, 2}]

8 1 1 1
R S

3V3 V3 Vi3 V3
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An important feature of Minimize and Maximize is that they always find global minima and
maxima. Often functions will have various local minima and maxima at which derivatives van-
ish. But Minimize and Maximize use global methods to find absolute minima or maxima, not
just local extrema.

Here is a function with many local maxima and minima.
Plot[x + 2 Sin[x], {x, -10, 10}]

10t o~

L
-10 -5 5 10

Maximize finds the global maximum.

Maximize[{x +2 Sin[x], -10 <= x <= 10}, x]

8 7t 8

3+ —, x> —
W e )
If you give functions that are unbounded, Minimize and Maximize will return -« and +~ as the
minima and maxima. And if you give constraints that can never be satisfied, they will return +co

and -« as the minima and maxima, and Indeterminate as the values of variables.

One subtle issue is that Minimize and Maximize allow both nonstrict inequalities of the form
x<=v, and strict ones of the form x<v. With nonstrict inequalities there is no problem with a
minimum or maximum lying exactly on the boundary x->v. But with strict inequalities, a mini-

mum or maximum must in principle be at least infinitesimally inside the boundary.

With a strict inequality, Mathematica prints a warning, then returns the point on the boundary.

Minimize[{x"2-3x+6, x > 3}, x]

{6, {x->3}}

Minimize and Maximize normally assume that all variables you give are real. But by giving a

constraint such as x € Integers you can specify that a variable must in fact be an integer.
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This does maximization only over integer values of x and y.
Maximize[{xy, x"2+y"2 < 120&& (x | y) € Integers}, {x, y}]
{56, {x>-8, y>-7}}

Minimize and Maximize can compute maxima and minima of linear functions over the integers

in bounded polyhedra. This is known as integer linear programming.

This does maximization over integer values of x and y in a triangle.

Maximize[{5+3y+7x%x, x>=0&&y >=0&&3x+4y <=100&& (x| y) € Integers}, {x, v}]
{236, {x>33, y~>0}}

Minimize and Maximize can produce exact symbolic results for polynomial optimization prob-
lems with parameters.

This finds the minimum of a general quadratic polynomial.

Minimize[ax"2+bx+c, x]

{c (b==0&&a==0) || (b==0&sa=0)
&
{ 2 (py0ssax0) || b<Dssax0) .
a
l-oo True
[D (b==0&&a==0) || (h=0&&a=10)
{x_) _r (b>0s5as0) || (bzOssas0) }}
l fa
Indeterminate True

MinValue [ {f,cons}, {x,y,...}] give the minimum value of f subject to the constraints cons
MaxValue [ {f,cons}, {x,y,...}] give the maximum value of f subject to the constraints cons
ArgMin[{f,cons}, {x,y,...}] give a position at which f is minimized subject to the

constraints cons
ArgMax [ {f,cons}, {x,y,...}] give a position at which f is maximized subject to the
constraints cons

Computing values and positions of minima and maxima.

Maximize gives both the value and the position of a maximum.

Maximize[{x+2y, x"2+y"~2 <1}, {x, y}]

W oo ifs v )]

Vs Vs
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Use MaxValue if you only need the maximum value.

MaxValue[{x+2y, x"2+y"~2 <1}, {x, y}]

Js

For strict polynomial inequality constraints computing only the maximum value may be much
faster.

TimeConstrained[
Maximize[{-x"2+2xy-2-1, x"2y<2z"3&&x-2"2>y"2+2}, {x,y, 2}], 300]

$Aborted

MaxValue[{-x"2+2xy-2-1,x"2y<2"3&&x-2"2>y"2+2}, {x,y, 2}] // Timing

{0.312, -1 - Root[-6674 484057677824 + 27190416 613703680 1l -
9845871213297967104 112 + 30310812947 042320384 11° - 38968344650849575680 11* +
27943648095748511616 =1° - 13622697129 083140957 #1°% + 5905344 357450294480 117 -
287285968112725142411% + 148459249262614579211° - 567863224101551360 1110 +
100879538475737088 11! + 303891741605888 1112 - 2224545911472128 1113 +
70301735976 960 51 + 25686 756 556 800 #1'° + 1786 706 395136 51'¢ + 73014444032 411" &, 1] }

ArgMax gives a position at which the maximum value is attained.
ArgMax[{x+2y, x"2+y"2 <1}, {x, y}]
2

F el )

Vs Vs

Linear Algebra

Constructing Matrices

Table [f, {i,m},{j,n}] build an mxn matrix where f is a function of i and j that
gives the value of the i, jth entry

Array [f, {m,n}] build an mxn matrix whose i, jth entry is f[i, j]

ConstantArray [a, {m,n}] build an mxn matrix with all entries equal to a

DiagonalMatrix [list] generate a diagonal matrix with the elements of list on the
diagonal

IdentityMatrix[n] generate an nxn identity matrix

Normal [SparseArray [ {{ij,ji1}-> make a matrix with nonzero values v, at positions {i;, ji}

vie{iar o} ->v2,...} o {m,n} 1]

Fiinctions far conctriictina matrices
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This generates a 2x2 matrix whose i, j™ entry is a[i, j].
Table[a[i, j1, {i, 2}, {j, 2}]
{{all, 1], a[1, 2]}, {a[2, 1], a[2, 2]}}

Here is another way to produce the same matrix.
Arrayl[a, {2, 2}]
{{all, 1], a[l, 2]}, {a[2, 1], a[2, 2]}}

This creates a 3x2 matrix of zeros.
ConstantArray [0, {3, 2}]

{{o, o}, {0, 0}, {0, 0}}

DiagonalMatrix makes a matrix with zeros everywhere except on the leading diagonal.
DiagonalMatrix[{a, b, c}]
{{a, 0, 0}, {0, b, 0}, {0, O, c}}

IdentityMatrix[n] produces an nxn identity matrix.
IdentityMatrix[3]
{{1, 0, 0}, {0, 1, 0}, {0, O, 1}}

This makes a 3x4 matrix with two nonzero values filled in.
Normal [SparseArray[{{2, 3} -> a, {3, 2} -> b}, {3, 4}]1]
{{o, o, o, 0}, {0, 0, a, 0}, {0, b, 0, 0}}

MatrixForm prints the matrix in a two-dimensional form.

MatrixForm[%]

o o o
o o o
o o o

o O o
—_

Table [0, {m}, {n}] a matrix of zeros
Table [If [i>=j,1,0],{i,m},{j,n}] a lower-triangular matrix

RandomReal [{0,1}, {m,n}] a matrix with random numerical entries

Constructing special types of matrices.
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Table evaluates If [i > j, a++, 0] separately for each element, to give a matrix with
sequentially increasing entries in the lower-triangular part.

a=1; Table[If[i > j, a++, 0], {i, 3}, {j, 3}]

{{1, 0, 0}, {2, 3, 0}, {4, 5, 6}}

SparseArray [{}, {n,n}] a zero matrix
SparseArray [{i ,i_ }->1,{n,n}] an n x n identity matrix
SparseArray [{i_,j a lower-triangular matrix

_}/ii>=j->1,{n,n}]

Constructing special types of matrices with SparseArray.

This sets up a general lower-triangular matrix.

SparseArray[{i_, j_} /; i>=3 -> £[i, j], {3, 3}] // MatrixForm

£[1, 1] © 0
£[2, 1] £[2, 2] ©
£[(3, 1] £[3, 2] £[3, 3]

Getting and Setting Pieces of Matrices

m([i,j]] the i, j™ entry

m[[i]] the i*" row

m|[a11,i]] the /" column

Take [m, {iy, i1}, {JorJji1}] the submatrix with rows iy through i; and columns j
through j;

m{ [ig;si1rjos /1] the submatrix with rows i, through i; and columns jj,
through j

m[ [{il veenlr Yo L g1y s Js 311 the rxs submatrix with elements having row indices i, and
column indices ji

Tr [m,List | elements on the diagonal

ArrayRules [m] positions of nonzero elements

Ways to get pieces of matrices.

Matrices in Mathematica are represented as lists of lists. You can use all the standard Mathemat-

ica list-manipulation operations on matrices.



152 | Mathematics and Algorithms

Here is a sample 3x3 matrix.

t = Array[a, {3, 3}]

{{afl, 1], a[1, 2], a[l

311, (a2

1}, al2, 2], a[2, 3]}, {a[3, 1], a[3, 2], a[3, 3]}}

This picks out the second row of the matrix.

t[[2]]

{al2, 1], a[2, 2], a[2, 3]}

Here is the second column of the matrix.

t[[ALl, 2]]

{all, 2], a[2, 2], a[3, 2]}

This picks out a submatrix.
Take[t, {1, 2}, {2, 3}]
{{all, 2], a[1,

31}, {al2, 2],

a2, 3]}}

={{an,ai2,...} 1 {a2,a0,...},...}
i, jl1=

[i]]=

[i]1={ai,a2,...}

lioziir] 1={visva,...}
[All,]]]:a
m[[Al1,j]]={ai, a2, ...}
Lio7itirjoiiil]=

{{allralzrm}: {azira22,...} ;... }

Resetting parts of matrices.

Here is a 3x3 matrix.

assign m to be a matrix

reset element {i, j} to bea

reset all elements in row i to be a

reset elements in row i to be {a;, a», ...}

reset rows i, through i; to be vectors {v;, v, ...}
reset all elements in column j to be a
reset elements in column j to be {a;, ay, ...}

reset the submatrix with rows iy through i; and columns jj,
through j; to new values

m={{a, b, ¢}, {d, e, £}, {g, h, i}}

{{a, b, ¢}, {d, e, £}, {g, h, i}}

This resets the 2, 2 element to be x, then shows the whole matrix.
m[[2, 2]] =x; m

{{a; b, ¢}, {d, x, £}, {9, h, 1}}
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This resets all elements in the second column to be z.
m[[All, 2]] =2; m

{{a, z, ¢}, {d, z, £}, {9, z, i}}

This separately resets the three elements in the second column.
m[[All, 2]] = {i, j, k}; m

{{a, i, ¢}, {d, 3, £}, {9, k, 1}}

This increments all the values in the second column.
m[[All, 2]] ++; m
{{a, 1+1i, ¢}, {d, 1 +3, £}, {9, 1L +k, i}}

A range of indices can be specified by using ;; (Span).

This resets the first two rows to be new vectors.
m[[1l;; 2]] = {{u, v, w}, {X,¥,2}};m
{{u, v, w}, (%, v, 2}, {g, 1L +k, i}}

This resets elements in the first and third columns of each row.
m[[All, 1;; 3 ;; 2]] = {{1, 2}, {3, 4}, {5, 6}}; m
{1, v, 2}, {3, ¥, 4}, {5, 1+k, 6}}

This resets elements in the first and third columns of rows 2 through 3.
m[[2;;3,1;;3;;2]]={{a, b}, {c,d}};m
({1, v, 2}, {a, y, b}, {c, 1 +k, d}}

Scalars, Vectors and Matrices

Mathematica represents matrices and vectors using lists. Anything that is not a list Mathematica

considers as a scalar.

A vector in Mathematica consists of a list of scalars. A matrix consists of a list of vectors, repre-
senting each of its rows. In order to be a valid matrix, all the rows must be the same length, so

that the elements of the matrix effectively form a rectangular array.
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VectorQ [expr] give True if expr has the form of a vector, and False
otherwise

MatrixQ [expr] give True if expr has the form of a matrix, and False
otherwise

Dimensions [expr] a list of the dimensions of a vector or matrix

Functions for testing the structure of vectors and matrices.

The list {a, b, ¢} has the form of a vector.
VectorQ[{a, b, c}]

True

Anything that is not manifestly a list is treated as a scalar, so applying VectorQ gives False.
VectorQ[x + y]

False

This is a 2x3 matrix.
Dimensions[{{a, b, ¢}, {ap, bp, cp}}]
{2, 3}

For a vector, Dimensions gives a list with a single element equal to the result from Length.
Dimensions[{a, b, c}]

{3}

This object does not count as a matrix because its rows are of different lengths.
MatrixQ[{{a, b, ¢}, {ap, bp}}]

False

Operations on Scalars, Vectors and Matrices

Most mathematical functions in Mathematica are set up to apply themselves separately to each

element in a list. This is true in particular of all functions that carry the attribute Listable.

A consequence is that most mathematical functions are applied element by element to matrices

and vectors.
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The Log applies itself separately to each element in the vector.
Log[{a, b, c}]

{Logla], Log[b], Log[c]}

The same is true for a matrix, or, for that matter, for any nested list.
Log[{{a, b}, {c, d}}]
{{Log[a], Log[b]}, {Log[c], Log[d]}}

The differentiation function D also applies separately to each element in a list.
D[{x, x~2, x"3}, x]

{1, 2%, 3%%}

The sum of two vectors is carried out element by element.

{a, b} + {ap, bp}
{a +ap, b+ bp}

If you try to add two vectors with different lengths, you get an error.
{a, b, ¢} + {ap, bp}
>

{ap, bp} + {a, b, ¢}

This adds the scalar 1 to each element of the vector.
1+ {a, b}

{l+a, 1+Db}

Any object that is not manifestly a list is treated as a scalar. Here c is treated as a scalar, and
added separately to each element in the vector.

{a, b} +c

{a+c, b+c}

This multiplies each element in the vector by the scalar k.
k {a, b}
{ak, bk}
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It is important to realize that Mathematica treats an object as a vector in a particular operation
only if the object is explicitly a list at the time when the operation is done. If the object is not
explicitly a list, Mathematica always treats it as a scalar. This means that you can get different
results, depending on whether you assign a particular object to be a list before or after you do
a particular operation.

The object p is treated as a scalar, and added separately to each element in the vector.
{a, b} +p
{a+p, b+p}

This is what happens if you now replace p by the list {c, d}.
%/.p->{c, d}
{{a+c, a+d}, {b+c, b+d}}

You would have got a different result if you had replaced p by {c, d} before you did the first
operation.

{a, b} + {c, 4}

{a+c, b+d}

Multiplying Vectors and Matrices

cv, cm, etc. multiply each element by a scalar

u.v, vem, m.v, mp.mp, etc. vector and matrix multiplication

Cross [u,Vv] vector cross product (also input as u x v)
Outer [Times,,u| outer product

KroneckerProduct [my,m;,...] Kronecker product

Different kinds of vector and matrix multiplication.

This multiplies each element of the vector by the scalar k.
k {a, b, c}

{ak, bk, ck}
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The "dot" operator gives the scalar product of two vectors.

{a, b, c¢}.{ap, bp, cp}
aap +bbp+ccp

You can also use dot to multiply a matrix by a vector.

{{a, b}, {e, d}}.{x, ¥}
{ax+by, cx+dy}

Dot is also the notation for matrix multiplication in Mathematica.
{{a, b}, {c, d}}.{{1, 2}, {3, 4}}

{{a+3b, 2a+4b}, {c+3d, 2c+4d}}

It is important to realize that you can use "dot" for both left- and right-multiplication of vectors
by matrices. Mathematica makes no distinction between "row" and "column" vectors. Dot car-
ries out whatever operation is possible. (In formal terms, a.b contracts the last index of the

tensor a with the first index of 54.)

Here are definitions for a matrix m and a vector v.
m = {{a, b}, {c, d}}; v={x, v}
{x, v}

This left-multiplies the vector v by m. The object v is effectively treated as a column vector in
this case.

m.v

{ax+by, cx+dy}

You can also use dot to right-multiply v by m. Now v is effectively treated as a row vector.
v.m

{ax+cy, bx+dy}

You can multiply m by v on both sides, to get a scalar.
v.m.v

X (ax+cy) +y (bx+dy)
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For some purposes, you may heed to represent vectors and matrices symbolically, without
explicitly giving their elements. You can use dot to represent multiplication of such symbolic

objects.

Dot effectively acts here as a noncommutative form of multiplication.

a.b.a

a.b.a

It is, nevertheless, associative.
(a.b).(a.b)

a.b.a.b

Dot products of sums are not automatically expanded out.
(a+b).c.(d+e)
(a+b).c.(d+e)

You can apply the distributive law in this case using the function Distribute, as discussed in
"Structural Operations".
Distribute[%]

a.c.d+a.c.e+b.c.d+b.c.e

The "dot" operator gives "inner products" of vectors, matrices, and so on. In more advanced
calculations, you may also need to construct outer or Kronecker products of vectors and matri-

ces. You can use the general function outer or KroneckerProduct to do this.

The outer product of two vectors is a matrix.
Outer[Times, {a, b}, {c, d}]
{{ac, ad}, {bc, bd}}

The outer product of a matrix and a vector is a rank three tensor.
Outer[Times, {{1, 2}, {3, 4}}, {x, ¥, z}]
{({{x, ¥y, 2}, {2%x, 2y, 22}}, {{3%, 3y, 32}, {4%x, 4y, 42}}}
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Outer products are discussed in more detail in "Tensors".

The Kronecker product of a matrix and a vector is a matrix.
KroneckerProduct[{{1, 2}, {3, 4}}, {x, v, 2}]

{x,y,2,2%,2y,22}, {3%,3y,32, 4%, 4y, 42}}

The Kronecker product of a pair of 2x2 matrices is a 4x4 matrix.
KroneckerProduct[{{1, 2}, {3, 4}}, {{a, b}, {c, d}}]
{{a, b, 2a, 2b}, {c, d, 2¢c, 2d}, {3a, 3b, 4a, 4b}, {3c, 3d, 4c, 4d}}

Vector Operations

v[[i]] or Part[v,i] give the i element in the vector v

cv scalar multiplication of ¢ times the vector v

u.v dot product of two vectors

Norm [v] give the norm of v

Normalize [Vv] give a unit vector in the direction of v

Standardize [v] shift v to have zero mean and unit sample variance
Standardize [v, fi] shift v by f; [v] and scale to have unit sample variance

Basic vector operations.

This is a vector in three dimensions.
v = {1, 3, 2}
{1, 3, 2}

This gives a vector u in the direction opposite to v with twice the magnitude.
us=-2v

{-2, -6, -4}

This reassigns the first component of u to be its negative.

uf[1]] = -u[[1]]; u
{21 ’61 ’4}
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This gives the dot product of u and v.
u.v

-24

This is the norm of v.

Norm[v]

Nery

This is the unit vector in the same direction as v.

Normalize[v]

{

1 3

’ r
V14 V14

-}

This verifies that the norm is 1.
Norm|[%]
1

Transform v to have zero mean and unit sample variance.
Standardize[v]

{-1, 1, 0}

This shows the transformed values have mean 0 and variance 1.
{Mean[%], Variance[%]}

{0, 1}

Two vectors are orthogonal if their dot product is zero. A set of vectors is orthonormal if they
are all unit vectors and are pairwise orthogonal.

Projection [u,Vv] give the orthogonal projection of u onto v

Orthogonalize [{vl V2, H generate an orthonormal set from the given list of vectors

Orthogonal vector operations.
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This gives the projection of u onto v.

p = Projection[u, v]

(22

7 7 7

p is a scalar multiple of v.

p/v

o)
u - p is orthogonal to v.

(u -p).v
0

Starting from the set of vectors {u, v}, this finds an orthonormal set of two vectors.
Oorthogonalize[{u, v}]

H 1 3 2
Jiz ig 7 14 91

When one of the vectors is linearly dependent on the vectors preceding it, the corresponding
position in the result will be a zero vector.

orthogonalize[{v, p, u}]

2
H ;} (0, 0, 0}, - "

Matrix Inversion

1 3

V14 V14

Inverse [m] find the inverse of a square matrix
Matrix inversion.
Here is a simple 2x2 matrix.

m= {{a, b}, {c, d}}

{{a, b}, {c, d}}
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This gives the inverse of m. In producing this formula, Mathematica implicitly assumes that the
determinant a d - b ¢ is nonzero.

Inverse[m]

{f

d b c a

bl

y

r - 4
-bc+ad -bc+ad -bc+ad -bc+ad

Multiplying the inverse by the original matrix should give the identity matrix.

%.m

{

bc ad bc ad

-bc+ad -bc+ad

You have to use Together to clear the denominators, and get back a standard identity matrix.
Together [%]

{{1, 0}, {0, 1}}

Here is a matrix of rational nhumbers.
hb = Table[1/ (i+3j), {i, 4}, {j, 4}]

Mathematica finds the exact inverse of the matrix.
Inverse[hb]

{{200, -1200, 2100, -1120}, {-1200, 8100, -15120, 8400},
{2100, -15120, 29400, -16800}, {-1120, 8400, -16 800, 9800} }

Multiplying by the original matrix gives the identity matrix.
%.hb

({1, o, o, 0}, {0, 1, 0, 0}, {0, 0, 1, O}, {0, O, O, 1}}

If you try to invert a singular matrix, Mathematica prints a warning message, and returns the
input unchanged.

Inverse[{{1l, 2}, {1, 2}}]

>

Inverse[{{1, 2}, {1, 2}}]
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If you give a matrix with exact symbolic or numerical entries, Mathematica gives the exact
inverse. If, on the other hand, some of the entries in your matrix are approximate real num-

bers, then Mathematica finds an approximate numerical result.

Here is a matrix containing approximate real numbers.
m={{1.2, 5.7}, {1.3, 5.6}}
{{1.2, 5.7}, {1.3, 5.6}}

This finds the numerical inverse.
Inverse[%]

{{-8.11594, 8.26087}, {1.88406, -1.73913}}

Multiplying by the original matrix gives you an identity matrix with small round-off errors.

%.m

{{1., 1.66187x107*°}, {3.27429x107%%, 1.}}

You can get rid of small off-diagonal terms using Chop.
Chop [%]
{{1., 0}, {0, 1.}}

When you try to invert a matrix with exact numerical entries, Mathematica can always tell
whether or not the matrix is singular. When you invert an approximate numerical matrix, Mathe-
matica can usually not tell for certain whether or not the matrix is singular: all it can tell is, for
example, that the determinant is small compared to the entries of the matrix. When Mathemat-

ica suspects that you are trying to invert a singular numerical matrix, it prints a warning.

Mathematica prints a warning if you invert a numerical matrix that it suspects is singular.
Inverse[{{1., 2.}, {1., 2.}}]

>

Inverse[{{1l., 2.}, {1., 2.}}]



164 | Mathematics and Algorithms

This matrix is singular, but the warning is different, and the result is useless.
Inverse[N[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}11]

>

{{3.15221x10"%, -6.30442x10", 3.15221x10"%},
{-6.30442x10"%, 1.26088x10'°, -6.30442x10"}, {3.15221x10'%, -6.30442x10"%, 3.15221x10"%}}

If you work with high-precision approximate numbers, Mathematica will keep track of the

precision of matrix inverses that you generate.

This generates a 6x6 numerical matrix with entries of 20-digit precision.
m = N[Table[GCD[i, j] +1, {i, 6}, {j, 6}], 20];

This takes the matrix, multiplies it by its inverse, and shows the first row of the result.

(m.Inverse[m]) [[1]]

{1.000000000000000000, 0.x107*°, 0.x107*°, 0.x107?°, 0.x107*°, 0.x1072°}

This generates a 20-digit numerical approximation to a 6x6 Hilbert matrix. Hilbert matrices are
notoriously hard to invert numerically.

m = N[Table[1/ (i+3j-1), {i, 6}, {j, 6}], 20];

The result is still correct, but the zeros now have lower accuracy.

(m.Inverse[m]) [[1]]

{1.000000000000000, 0.x107**, 0.x107"*, 0.x107*, 0.x107", 0.x107"}

Inverse works only on square matrices. "Advanced Matrix Operations" discusses the function

PseudolInverse, Which can also be used with nonsquare matrices.

Basic Matrix Operations

Transpose [m] transpose m'

ConjugateTranspose [m] conjugate transpose m' (Hermitian conjugate)
Inverse [m] matrix inverse

Det [m] determinant

Minors [m] matrix of minors
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Minors [m, k] k™" minors
Tr [m] trace
MatrixRank [m] rank of matrix

Some basic matrix operations.

Transposing a matrix interchanges the rows and columns in the matrix. If you transpose an

mXn matrix, you get an nxm matrix as the result.

Transposing a 2x3 matrix gives a 3x2 result.
Transpose[{{a, b, c}, {ap, bp, cp}}]
{{a, ap}, {b, bp}, {c, cp}}

Det [m] gives the determinant of a square matrix m. Minors[m] is the matrix whose (i, j)™
element gives the determinant of the submatrix obtained by deleting the (n—i+ 1) row and the
(n—-j+ D™ column of m. The (i, ) cofactor of m is (-1)"/ times the n—i+1,n—j+ D™ element of

the matrix of minors.

Minors[m, k] gives the determinants of the kxk submatrices obtained by picking each possible
set of k rows and k columns from m. Note that you can apply Minors to rectangular, as well as

square, matrices.

Here is the determinant of a simple 2x2 matrix.
Det[{{a, b}, {c, d}}]

-bc+ad

This generates a 3x3 matrix, whose i, /" entry is a[i, j].
m = Array[a, {3, 3}]
{{all, 1], a[1, 2], a[1, 31}, {al2, 1], al2, 2], a[2, 31}, {a[3, 1], a[3, 2], a3, 3]})

Here is the determinant of m.
Det [m]
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The trace or spur of a matrix Tr [m] is the sum of the terms on the leading diagonal.

This finds the trace of a simple 2x2 matrix.
Tr[{{a, b}, {c, d}}]

a+d
The rank of a matrix is the number of linearly independent rows or columns.
This finds the rank of a matrix.

MatrixRank[{{1, 2}, {1, 2}}]
1

MatrixPower [m,n] n™ matrix power

MatrixExp [m] matrix exponential

Powers and exponentials of matrices.

Here is a 2x2 matrix.
m={{0.4, 0.6}, {0.525, 0.475}}
{{0.4, 0.6}, {0.525, 0.475}}

This gives the third matrix power of m.
MatrixPower [m, 3]

{{0.465625, 0.534375}, {0.467578, 0.532422}}

It is equivalent to multiplying three copies of the matrix.
m.m.m

{{0.465625, 0.534375}, {0.467578, 0.532422}}

Here is the millionth matrix power.
MatrixPower [m, 107 6]

{{0.466667, 0.533333}, {0.466667, 0.533333}}
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The matrix exponential of a matrix m is Y32,m* /k!, where m* indicates a matrix power.

This gives the matrix exponential of m.
MatrixExp[m]
{{1.7392, 0.979085}, {0.8567, 1.86158}}

Here is an approximation to the exponential of m, based on a power series approximation.
Sum[MatrixPower[m, k] / k!, {k, 0, 5}]
{{1.73844, 0.978224}, {0.855946, 1.86072}}

Solving Linear Systems

Many calculations involve solving systems of linear equations. In many cases, you will find it

convenient to write down the equations explicitly, and then solve them using solve.

In some cases, however, you may prefer to convert the system of linear equations into a matrix
equation, and then apply matrix manipulation operations to solve it. This approach is often
useful when the system of equations arises as part of a general algorithm, and you do not know

in advance how many variables will be involved.

A system of linear equations can be stated in matrix form as m.x=5, where x is the vector of

variables.

Note that if your system of equations is sparse, so that most of the entries in the matrix m are
zero, then it is best to represent the matrix as a sparseArray object. As discussed in "Sparse
Arrays: Linear Algebra", you can convert from symbolic equations to SparseArray objects
using CoefficientArrays. All the functions described here work on SparseArray objects as

well as ordinary matrices.

LinearSolve [m,b] a vector x which solves the matrix equation m.x ==
NullSpace [m] a list of linearly independent vectors whose linear combina-
tions span all solutions to the matrix equation m.x ==0
MatrixRank [m] the number of linearly independent rows or columns of m
RowReduce [m] a simplified form of m obtained by making linear combina-

tions of rows

Solving and analyzing linear systems.
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Here is a 2x2 matrix.
m = {{11 5}, {21 1]’]’
{{1, 5}, {2, 1}}

This gives two linear equations.

m.{x, y} == {a, b}
{(x+5y, 2x+y}={a, b}

You can use Solve directly to solve these equations.
Solve[%, {x, y}]

{{xeé (-a+5b), yﬁz(za—bﬁ}

You can also get the vector of solutions by calling LinearSolve. The result is equivalent to the
one you get from Solve.

LinearSolve[m, {a, b}]

{i (-a+5b),

5 (Za—b)}

0 | =

Another way to solve the equations is to invert the matrix m, and then multiply {a, b} by the
inverse. This is not as efficient as using LinearSolve.

Inverse[m].{a, b}
a 5b 2a b

(5.2

9 9 9 9

RowReduce performs a version of Gaussian elimination and can also be used to solve the
equations.

RowReduce[{{1, 5, a}, {2, 1, b}}]

{{1, 0, <2afb>}}

o | -
o | =

(—a+5b)}, {o, 1,

If you have a square matrix m with a nonzero determinant, then you can always find a unique
solution to the matrix equation m.x=»5 for any b. If, however, the matrix m has determinant
zero, then there may be either no vector, or an infinite humber of vectors x which satisfy mx=5

for a particular ». This occurs when the linear equations embodied in m are not independent.
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When m has determinant zero, it is nevertheless always possible to find nonzero vectors x that
satisfy m.x=0. The set of vectors x satisfying this equation form the null space or kernel of the
matrix m. Any of these vectors can be expressed as a linear combination of a particular set of
basis vectors, which can be obtained using Nullspace [m].

Here is a simple matrix, corresponding to two identical linear equations.
m={{1, 2}, {1, 2}}
{1, 2}, {1, 2}}

The matrix has determinant zero.
Det [m]
0

LinearSolve cannot find a solution to the equation m.x == b in this case.

LinearSolve[m, {a, b}]

>

LinearSolve[{{1, 2}, {1, 2}}, {a, b}]

There is a single basis vector for the null space of m.
NullSpace[m]
{{-2, 1}}

Multiplying the basis vector for the null space by m gives the zero vector.
m.%[[1]]
{0, 0}

There is only 1 linearly independent row in m.
MatrixRank [m]

1

NullSpace and MatrixRank have to determine whether particular combinations of matrix
elements are zero. For approximate numerical matrices, the Tolerance option can be used to
specify how close to zero is considered good enough. For exact symbolic matrices, you may
sometimes need to specify something like ZeroTest -> (FullSimplify[t] == 0 &) to force

more to be done to test whether symbolic expressions are zero.
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Here is a simple symbolic matrix with determinant zero.
m= {{a, b, ¢}, {2a, 2b, 2¢}, {3a, 3b, 3¢c}}
{{a, b, ¢}, {2a, 2b, 2¢}, {3a, 3b, 3c}}

The basis for the null space of m contains two vectors.
NullSpace[m]

c b

(BRI E)

a a

Multiplying m by any linear combination of these vectors gives zero.
Simplify[m. (x%[[1]] +y%[[2]])]
{0, 0, 0}

An important feature of functions like LinearSolve and NullSpace is that they work with

rectangular, as well as square, matrices.

When you represent a system of linear equations by a matrix equation of the form m.x=5, the
number of columns in m gives the number of variables, and the number of rows gives the num-

ber of equations. There are a number of cases.

Underdetermined number of equations less than the number of variables; no
solutions or many solutions may exist

Overdetermined number of equations more than the number of variables;
solutions may or may not exist

Nonsingular number of independent equations equal to the number of
variables, and determinant nonzero; a unique solution
exists

Consistent at least one solution exists

Inconsistent no solutions exist

Classes of linear systems represented by rectangular matrices.

This asks for the solution to the inconsistent set of equations x=1 and x=0.
LinearSolve[{{1}, {1}}, {1, 0}]
>

LinearSolve[{{1l}, {1}}, {1, 0}]
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This matrix represents two equations, for three variables.
m = {{11 3, 4}1 {21 1, 3}}

{1, 3, 4}, {2, 1, 3}}

LinearSolve gives one of the possible solutions to this underdetermined set of equations.

v = LinearSolve[m, {1, 1}]

When a matrix represents an underdetermined system of equations, the matrix has a nontrivial
null space. In this case, the null space is spanned by a single vector.

NullSpace[m]

{{-1, -1, 1}}

If you take the solution you get from LinearSolve, and add any linear combination of the
basis vectors for the null space, you still get a solution.

m.(v+4%[[1]])

{1, 1}

The number of independent equations is the rank of the matrix MatrixRank [m]. The number of

redundant equations is Length [NullSpace[m]]. Note that the sum of these quantities is always

equal to the number of columns in m.

LinearSolve [m] generate a function for solving equations of the form m.x =5

Generating LinearSolveFunction objects.

In some applications, you will want to solve equations of the form m.x=5b many times with the

same m, but different 5. You can do this efficiently in Mathematica by using LinearSolve [m] to

create a single LinearSolveFunction that you can apply to as many vectors as you want.

This creates a LinearSolveFunction.
f = LinearSolve[{{1, 4}, {2, 3}}]

LinearSolveFunction[{2, 2}, <>]
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You can apply this to a vector.

£f[{5, 7}]

o<

You get the same result by giving the vector as an explicit second argument to LinearSolve.
LinearSolve[{{1, 4}, {2, 3}}, {5, 7}]

2.2

5

But you can apply £ to any vector you want.
f[{-5, 9}]
51 19

-2

5

give a vector x that solves the least-squares problem
mx==

LeastSquares [m,b]

Solving least-squares problems.

This linear system is inconsistent.
LinearSolve[{{1, 2}, {3, 4}, {5, 6}}, {-1, 0, 2}]

LinearSolve::nosol: Linear equation encountered that has no solution. >

LinearSolve[{{1l, 2}, {3, 4}, {5, 6}}, {-1, 0, 2}]

LeastSquares finds a vector x that minimizes m.x — b in the least-squares sense.

LeastSquares[{{1, 2}, {3, 4}, {5, 6}}, {-1, 0, 2}]

Eigenvalues and Eigenvectors

Eigenvalues [m] a list of the eigenvalues of m

Eigenvectors [m] a list of the eigenvectors of m
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Eigensystem [m] a list of the form {eigenvalues, eigenvectors)
Eigenvalues [N[m] |, etc. numerical eigenvalues
Eigenvalues [N (m,p] ] , etc. numerical eigenvalues, starting with p-digit precision

CharacteristicPolynomial [m,x]

the characteristic polynomial of m
Eigenvalues and eigenvectors.

The eigenvalues of a matrix m are the values A; for which one can find nonzero vectors v; such

that m.v; = A;v;. The eigenvectors are the vectors v;.

The characteristic polynomial CharacteristicPolynomial [m, x] for an nxn matrix is given by

Det[m - x IdentityMatrix[n]]. The eigenvalues are the roots of this polynomial.

Finding the eigenvalues of an nxn matrix in general involves solving an »n™'-degree polynomial
equation. For n=3, therefore, the results cannot in general be expressed purely in terms of
explicit radicals. rRoot objects can nevertheless always be used, although except for fairly

sparse or otherwise simple matrices the expressions obtained are often unmanageably complex.

Even for a matrix as simple as this, the explicit form of the eigenvalues is quite complicated.
Eigenvalues[{{a, b}, {-b, 2a}}]

1
3a—\/a2—4b2], — 3a+\/a2—4b2]}
2

1

{,

2

If you give a matrix of approximate real numbers, Mathematica will find the approximate numeri-
cal eigenvalues and eigenvectors.

Here is a 2x2 numerical matrix.
m={{2.3, 4.5}, {6.7, -1.2}}
{{2.3, 4.5}, (6.7, -1.2}}

The matrix has two eigenvalues, in this case both real.
Eigenvalues [m]

{6.31303, -5.21303}

Here are the two eigenvectors of m.
Eigenvectors[m]

{{0.746335, 0.66557}, {-0.513839, 0.857886}}
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Eigensystem computes the eigenvalues and eigenvectors at the same time. The assignment
sets vals to the list of eigenvalues, and vecs to the list of eigenvectors.

{vals, vecs} = Eigensystem[m]

{{6.31303, -5.21303}, {{0.746335, 0.66557}, {-0.513839, 0.857886}}}

This verifies that the first eigenvalue and eigenvector satisfy the appropriate condition.
m.vecs[[1]] == vals[[1]] vecs[[1]]

True

This finds the eigenvalues of a random 4x4 matrix. For nonsymmetric matrices, the eigenvalues
can have imaginary parts.

Eigenvalues[Table[RandomReal[], {4}, {4}]1]
{2.30022, 0.319764 + 0.547199 1, 0.319764 - 0.547199 1, 0.449291}

The function Eigenvalues always gives you a list of n eigenvalues for an nxn matrix. The eigen-
values correspond to the roots of the characteristic polynomial for the matrix, and may not
necessarily be distinct. Eigenvectors, on the other hand, gives a list of eigenvectors which are
guaranteed to be independent. If the number of such eigenvectors is less than »n, then
Eigenvectors appends zero vectors to the list it returns, so that the total length of the list is
always n.

Here is a 3x3 matrix.
mz = {{O, 1, 0}, {O, O, 1}, {O, O, O}}
{{o, 1, o}, {0, 0, 1}, {0, 0, 0}}

The matrix has three eigenvalues, all equal to zero.
Eigenvalues [mz]

{0, 0, 0}

There is, however, only one independent eigenvector for the matrix. Eigenvectors appends
two zero vectors to give a total of three vectors in this case.

Eigenvectors[mz]

({1, o, 0}, {0, 0, O}, {0, O, 0}}
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This gives the characteristic polynomial of the matrix.
CharacteristicPolynomial [mz, x]

,Xa

Eigenvalues [m, k] the largest k eigenvalues of m

Eigenvectors [m, k] the corresponding eigenvectors of m

Eigensystem [m, k] the largest k eigenvalues with corresponding eigenvectors
Eigenvalues [m, k] the smallest k eigenvalues of m

Eigenvectors [m, -k] the corresponding eigenvectors of m

Eigensystem [m, k] the smallest k eigenvalues with corresponding eigenvectors

Finding largest and smallest eigenvalues.

Eigenvalues sorts numeric eigenvalues so that the ones with large absolute value come first.
In many situations, you may be interested only in the largest or smallest eigenvalues of a

matrix. You can get these efficiently using Eigenvalues [m, k] and Eigenvalues [m, -k].

This computes the exact eigenvalues of an integer matrix.
Eigenvalues[{{1, 2}, {3, 4}}]

(G s Sl 5s))

1
2

The eigenvalues are sorted in decreasing order of size.
N[%]
{5.37228, -0.372281}

This gives the three eigenvalues with largest absolute value.
Eigenvalues[Table[N[Tan[i / j]], {i, 10}, {j, 10}], 3]
{10.044, 2.94396 + 6.03728 i, 2.94396 - 6.03728 i}

Eigenvalues [ {m,a}] the generalized eigenvalues of m with respect to a
Eigenvectors|[{m,a}] the generalized eigenvectors of m with respect to a
Eigensystem|[{m,a}] the generalized eigensystem of m with respect to a

CharacteristicPolynomial [ {m,a},x]

the generalized characteristic polynomial of m with respect
toa

Generalized eigenvalues, eigenvectors, and characteristic polynomial.
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The generalized eigenvalues for a matrix m with respect to a matrix « are defined to be those A;

for which m.yv; = A; a.v;.

The generalized eigenvalues correspond to zeros of the generalized characteristic polynomial

Det[m-xa].

Note that while ordinary matrix eigenvalues always have definite values, some generalized
eigenvalues will always be Indeterminate if the generalized characteristic polynomial vanishes,
which happens if m and a share a null space. Note also that generalized eigenvalues can be
infinite.

These two matrices share a one-dimensional null space, so one generalized eigenvalue is
Indeterminate.

Eigenvalues[{{{1.5, 0}, {0, 0}}, {{2, O}, {1, O}}}]

{0., Indeterminate}

This gives a generalized characteristic polynomial.
CharacteristicPolynomial[{{{1.5, 0}, {0, 1}}, {{2, 0}, {1, O}}}, x]

1.5-2.x

Advanced Matrix Operations

SingularValueList [m] the list of nonzero singular values of m
SingularValuelList [m, k] the k largest singular values of m
SingularValueList|[{m,a}] the generalized singular values of m with respect to a
Norm [m, p] the p-norm of m

Norm [m, "Frobenius"] the Frobenius norm of m

Finding singular values and norms of matrices.

The singular values of a matrix m are the square roots of the eigenvalues of m.m*, where x
denotes Hermitian transpose. The number of such singular values is the smaller dimension of
the matrix. singularvalueList sorts the singular values from largest to smallest. Very small
singular values are usually numerically meaningless. With the option setting Tolerance -> 1,
SingularValueList drops singular values that are less than a fraction ¢ of the largest singular

value. For approximate numerical matrices, the tolerance is by default slightly greater than zero.
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If you multiply the vector for each point in a unit sphere in n-dimensional space by an mxn
matrix m, then you get an m-dimensional ellipsoid, whose principal axes have lengths given by

the singular values of m.

The 2-norm of a matrix Norm[m, 2] is the largest principal axis of the ellipsoid, equal to the
largest singular value of the matrix. This is also the maximum 2-norm length of m.v for any

possible unit vector v.

The p-norm of a matrix Norm[m, p] is in general the maximum p-norm length of m.v that can be
attained. The cases most often considered are p=1, p=2 and p= . Also sometimes considered

is the Frobenius norm Norm[m, "Frobenius"], which is the square root of the trace of m.m*.

LUDecomposition [m] the LU decomposition

CholeskyDecomposition [m] the Cholesky decomposition
Decomposing square matrices into triangular forms.

When you create a LinearSolveFunction using LinearSolve [m], this often works by decom-
posing the matrix m into triangular forms, and sometimes it is useful to be able to get such

forms explicitly.

LU decomposition effectively factors any square matrix into a product of lower- and upper-
triangular matrices. Cholesky decomposition effectively factors any Hermitian positive-definite
matrix into a product of a lower-triangular matrix and its Hermitian conjugate, which can be

viewed as the analog of finding a square root of a matrix.

PseudoInverse [m] the pseudoinverse

QRDecomposition [m] the QR decomposition

SingularValueDecomposition [m] the singular value decomposition

SingularValueDecomposition [ the generalized singular value decomposition
{m,a}]

Orthogonal decompositions of matrices.

The standard definition for the inverse of a matrix fails if the matrix is not square or is singular.
The pseudoinverse m=Y of a matrix m can however still be defined. It is set up to minimize the
sum of the squares of all entries in m.an-" — I, where I is the identity matrix. The pseudoinverse
is sometimes known as the generalized inverse, or the Moore-Penrose inverse. It is particularly

used for problems related to least-squares fitting.
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QR decomposition writes any matrix m as a product ¢*.r, where ¢ is an orthonormal matrix, =
denotes Hermitian transpose, and r is a triangular matrix, in which all entries below the leading

diagonal are zero.

Singular value decomposition, or SVD, is an underlying element in many numerical matrix
algorithms. The basic idea is to write any matrix m in the form u.s.*, where s is a matrix with
the singular values of m on its diagonal, u and v are orthonormal matrices, and v* is the Hermi-

tian transpose of v.

JordanDecomposition [m] the Jordan decomposition
SchurDecomposition [m] the Schur decomposition
SchurDecomposition [ {m,a}] the generalized Schur decomposition
HessenbergDecomposition [m] the Hessenberg decomposition

Functions related to eigenvalue problems.

Most square matrices can be reduced to a diagonal matrix of eigenvalues by applying a matrix
of their eigenvectors as a similarity transformation. But even when there are not enough eigen-
vectors to do this, one can still reduce a matrix to a Jordan form in which there are both eigen-
values and Jordan blocks on the diagonal. Jordan decomposition in general writes any square

matrix in the form s.j.s~!.

Numerically more stable is the Schur decomposition, which writes any square matrix m in the
form q.t.q*, where ¢ is an orthonormal matrix, and ¢ is block upper-triangular. Also related is the
Hessenberg decomposition, which writes a square matrix m in the form p.h.p*, where p is an
orthonormal matrix, and k can have nonzero elements down to the diagonal below the leading

diagonal.

Tensors

Tensors are mathematical objects that give generalizations of vectors and matrices. In Mathe-
matica, a tensor is represented as a set of lists, nested to a certain number of levels. The
nesting level is the rank of the tensor.
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rank O scalar
rank 1 vector
rank 2 matrix
rank k rank k tensor

Interpretations of nested lists.

A tensor of rank k is essentially a k-dimensional table of values. To be a true rank k tensor, it
must be possible to arrange the elements in the table in a k-dimensional cuboidal array. There

can be no holes or protrusions in the cuboid.

The indices that specify a particular element in the tensor correspond to the coordinates in the

cuboid. The dimensions of the tensor correspond to the side lengths of the cuboid.

One simple way that a rank k tensor can arise is in giving a table of values for a function of &
variables. In physics, the tensors that occur typically have indices which run over the possible
directions in space or spacetime. Notice, however, that there is no built-in notion of covariant
and contravariant tensor indices in Mathematica: you have to set these up explicitly using

metric tensors.

Table [fl {illnl} ’ {i21n2} XXV {iklnk}J
create an n; xXny X...xn; tensor whose elements are the
values of f

Array [a,{ni,na, ..., ng} ] create an n;xn, X...xn; tensor with elements given by
applying a to each set of indices

ArrayQ([t,n] test whether ¢ is a tensor of rank n

Dimensions [?] give a list of the dimensions of a tensor

ArrayDepth [1] find the rank of a tensor

MatrixForm [¢] print with the elements of ¢ arranged in a two-dimensional
array

Functions for creating and testing the structure of tensors.

Here is a 2x3x2 tensor.
t = Table[il +i2 i3, {il, 2}, {i2, 3}, {i3, 2}]

{{{2, 3}, {3, 5}, {4, 73}, {{3, 4}, {4, 6}, {5, 8}}}
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This is another way to produce the same tensor.
Array[ (#1 + #2#3) &, {2, 3, 2}]

{{{2, 3}, {3, 5}, {4, 73}, {{3, 4}, {4, 6}, {5, 8}}}

MatrixForm displays the elements of the tensor in a two-dimensional array. You can think of
the array as being a 2x3 matrix of column vectors.

HEHER
o) (&) (5]

Dimensions gives the dimensions of the tensor.
Dimensions[t]

{2, 3, 2}

Here is the 111 element of the tensor.
t[[1, 1, 1]]
2

ArrayDepth gives the rank of the tensor.
ArrayDepth[t]
3

The rank of a tensor is equal to the number of indices needed to specify each element. You can

pick out subtensors by using a smaller number of indices.

Transpose [/] transpose the first two indices in a tensor

Transpose [f, {p1,P2,s---}] transpose the indices in a tensor so that the k™ becomes
the pt"

Tr ¢, f] form the generalized trace of the tensor ¢

Outer [f,t,1] form the generalized outer product of the tensors ¢ and 1,

with "multiplication operator" f

t .t form the dot product of #; and ¢, (last index of #; contracted
with first index of 1,)

Inner [f,t;,t,8] form the generalized inner product, with "multiplication
operator" f and "addition operator" g

Tensor manipulation operations.
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You can think of a rank k tensor as having k "slots" into which you insert indices. Applying
Transpose is effectively a way of reordering these slots. If you think of the elements of a tensor

as forming a k-dimensional cuboid, you can view Transpose as effectively rotating (and possibly
reflecting) the cuboid.

In the most general case, Transpose allows you to specify an arbitrary reordering to apply to
the indices of a tensor. The function Transpose [T, {pi, p2, ..., px}] gives you a new tensor T’
such that the value of 77, ;, _; is given by T;,

Ly eip

If you originally had an n, xn, x...xn, tensor, then by applying Transpose, you will get an

nyxnpx...xn; tensor.

Here is a matrix that you can also think of as a 2x3 tensor.
m= {{a, b, ¢}, {ap, bp, cp}}
{{a, b, ¢}, {ap, bp, cp}}

Applying Transpose gives you a 3x2 tensor. Transpose effectively interchanges the two
"slots" for tensor indices.

mt = Transpose[m]

{{a, ap}, {b, bp}, {c, cp}}

The elementm[[2, 3]] in the original tensor becomes the elementm[ [3, 2]] in the trans-
posed tensor.

{m[[2, 3]], mt[[3, 2]]}
{cp, cp}

This produces a 2x3x1x2 tensor.
t = Array[a, {2, 3, 1, 2}]
1,1,1], a1, 1,1, 2] {{all, 2, 1, 1], a[l, 2, 1, 2]

211}, 1y
3,1,1], a1, 3, 1, 2]}}}, {{{a[2, 1, 1, 1], a[2, 1, 1, 2]}},
2,1, 1], al2, 2, 1, 2]}}, {{a[2, 3, 1, 1], a[2, 3, 1, 2]}}}}

This transposes the first two levels of t.

ttl = Transpose[t]

{{{{afl, 1, 1, 1], a[l, 1, 1, 2]}}, {{al2, 1, Iy
{{all, 2, 1, 1], a[l, 2, 1, 2]}}, {{al2, 2, 1, 1], a[2, 2, 1, 2]}}}

{{all, 3, 1, 1], a[l, 3, 1, 2]}}, {{al2, 3, 11}
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The result is a 3x2x1x2 tensor.
Dimensions[ttl]

{3,2,1, 2}

If you have a tensor that contains lists of the same length at different levels, then you can use

Transpose to effectively collapse different levels.

This collapses all three levels, giving a list of the elements on the "main diagonal".
Transpose[Array[a, {3, 3, 3}], {1, 1, 1}]

{all, 1, 1], a[2, 2, 2], a[3, 3, 3]}

This collapses only the first two levels.
Transpose[Array[a, {2, 2, 2}], {1, 1}]
{{al1, 1, 1], a[l, 1, 2]}, {al2, 2, 1], a[2, 2, 2]}}

You can also use Tr to extract diagonal elements of a tensor.

This forms the ordinary trace of a rank 3 tensor.
Tr[Array[a, {3, 3, 3}]11]
a[l, 1, 1] +a[2, 2, 2] +a[3, 3, 3]

Here is a generalized trace, with elements combined into a list.
Tr[Array[a, {3, 3, 3}], List]

{af1, 1, 1], af2, 2, 2], a[3, 3, 3]}

This combines diagonal elements only down to level 2.
Tr [Array[a, {3, 3, 3}], List, 2]
{{afl, 1, 1], a[l, 1, 2], a[l, 1, 3]},

{al2, 2, 1], a[2, 2, 2], a2, 2, 3]}, {a[3, 3, 1], a[3, 3, 2], a[3, 3, 3]}}
Outer products, and their generalizations, are a way of building higher-rank tensors from lower-

rank ones. Outer products are also sometimes known as direct, tensor or Kronecker products.

From a structural point of view, the tensor you get from outer[f, r, u] has a copy of the
structure of u inserted at the "position" of each element in r. The elements in the resulting

structure are obtained by combining elements of r and « using the function f.
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This gives the "outer £" of two vectors. The result is a matrix.
Outer[£f, {a, b}, {ap, bp}]

{{fla, ap], f[a, bp]}, {f[b, ap], £[b, bp]}}

If you take the "outer £" of a length 3 vector with a length 2 vector, you get a 3x2 matrix.
Outer[f, {a, b, ¢}, {ap, bp}]

{{f[a, ap], f[a, bp]}, {f[b, ap], £[b, bp]}, {f[c, ap], f[c, bp]}}

The result of taking the "outer £" of a 2x2 matrix and a length 3 vector is a 2x2x3 tensor.
Outer[f, {{mll, m12}, {m21, m22}}, {a, b, c}]

f[ml2, a], £[ml2, b], £[ml2, c]

{{{f[ml1l, a], £[mll, b}, £[mll, c]}, { bhe
bo {£[m22, a], £[m22, b], £[m22, c]}}}

{{f[m21, a], £[m21, b], £[m21, c]

Here are the dimensions of the tensor.
Dimensions[%]

{2, 2, 3}

If you take the generalized outer product of an m;xm,x...xm, tensor and an n;xn,x...xn,; tensor,
you get an mx...xm,xn;x...xn, tensor. If the original tensors have ranks r and s, your result will

be a rank r + s tensor.

In terms of indices, the result of applying outer to two tensors 7; ;, ; and U; ;, ., is the tensor

V; ;, with elements f[T; ;, i, Uj j,..;]-

Vi e dr Jy o e

In doing standard tensor calculations, the most common function f to use in Outer is Times,

corresponding to the standard outer product.

Particularly in doing combinatorial calculations, however, it is often convenient to take f to be
List. Using outer, you can then get combinations of all possible elements in one tensor, with

all possible elements in the other.

In constructing outer [f, t, u] you effectively insert a copy of u at every point in . To form
Inner [f, t, u], you effectively combine and collapse the last dimension of ¢ and the first dimen-
sion of u. The idea is to take an m;xm,x...xm, tensor and an n;xn,x...xn, tensor, with m, = n;, and

get an myxmyx...xm,_xnyx...xng tensor as the result.
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The simplest examples are with vectors. If you apply Inner to two vectors of equal length, you
get a scalar. Inner[f, vi, v», g] gives a generalization of the usual scalar product, with f

playing the role of multiplication, and g playing the role of addition.

This gives a generalization of the standard scalar product of two vectors.
Inner[f, {a, b, ¢}, {ap, bp, cp}, 9]
glfla, ap], £[b, bp], f[c, cp]]

This gives a generalization of a matrix product.
Inner([f, {{1, 2}, {3, 4}}, {{a, b}, {c, d}}, g]
{{q[£f[1, a], £[2, c]], gl[f[1, b], £[2, d]]}, {9[£f([3, a], £[4, c]], g[f[3, b], £[4, d]]}}

Here is a 3x2x2 tensor.
a = Array[l &, {3, 2, 2}]

(0, 13, {1, 13}, {{1, 1}, {1, 1}}, ({1, 1}, {1, 1}}}

Here is a 2x3x1 tensor.
b = Array[2 &, {2, 3, 1}]
({{2}, {2}, {2}}, {{2}, {2}, {2}}}

This gives a 3x2x3x1 tensor.
a.b

IS
e

r {4}, {4}}},
o {4}, {431, ({{4}, {4}, {41}, ({4}, {4}, {4}}}}

Here are the dimensions of the result.
Dimensions[%]

{3, 2,3, 1}

You can think of Inner as performing a "contraction" of the last index of one tensor with the
first index of another. If you want to perform contractions across other pairs of indices, you can
do so by first transposing the appropriate indices into the first or last position, then applying

Inner, and then transposing the result back.

In many applications of tensors, you need to insert signs to implement antisymmetry. The
function signature({i;, i», ...} ], which gives the signature of a permutation, is often useful for
this purpose.
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outer [f,t,tr,...] form a generalized outer product by combining the lowest-
level elements of ¢, £, ...

outer [f,t1,tr,..., 1] treat only sublists at level n as separate elements

outer [f,ty,try..., Ny, Ny, ...] treat only sublists at level n; in t; as separate elements

Inner [f,t;,t,8] form a generalized inner product using the lowest-level

elements of #
Inner [f,t;,tr,g,n] contract index n of the first tensor with the first index of
the second tensor

Treating only certain sublists in tensors as separate elements.

Here every single symbol is treated as a separate element.

outer[f, {{i, j}, {k, 1}}, {x, ¥}]
{({{£[1, x], £[1, y]}, (€03, x), £03, ¥1}}, {({f(k, %], £k, y1}, {£[1, x], £[1, y]}}}

But here only sublists at level 1 are treated as separate elements.
Outer[f, {{i, j}, {k, 1}}, {x, ¥}, 1]
{({£0{1, 3}, %], £0{L, 3}, ¥]}, {£0{k, 1}, x], £[{k, 1}, ¥]}}

ArrayFlatten [t,r] create a flat rank r tensor from a rank r tensor of rank r
tensors
ArrayFlatten [¢] flatten a matrix of matrices (equivalent to

ArrayFlatten [z, 2])

Flattening block tensors.

Here is a block matrix (a matrix of matrices that can be viewed as blocks that fit edge to edge
within a larger matrix).

TableForm[{{ {{1, 2}, {4, 5}}, ({3}, {6}} 1}, { {{7, 8}}, {{9}}1}}]

12 3
4 5 6
7 8 9

Here is the matrix formed by piecing the blocks together.
TableForm[ArrayFlatten[%]]

~N s -
© U N
o o W
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Sparse Arrays: Linear Algebra

Many large-scale applications of linear algebra involve matrices that have many elements, but
comparatively few that are nonzero. You can represent such sparse matrices efficiently in
Mathematica using SparseArray objects, as discussed in "Sparse Arrays: Manipulating Lists".

SparseArray objects work by having lists of rules that specify where nonzero values appear.

SparseArray [list] a SparseArray version of an ordinary list
SparseArray [ { {il /jl }_>V1 4 {i2lj2}_>v2l } ’ {m,n} J

an mxn sparse array with element {i;, j;} having value v,

SparseArray [{{ii,ji}, {2/ 2} s} —>{Viyva,...},{m,n}]

the same sparse array

Normal [array] the ordinary list corresponding to a SparseArray
Specifying sparse arrays.

As discussed in "Sparse Arrays: Manipulating Lists", you can use patterns to specify collections
of elements in sparse arrays. You can also have sparse arrays that correspond to tensors of any

rank.

This makes a 50x50 sparse numerical matrix, with 148 nonzero elements.
m = SparseArray[{{30, _} -> 11.5, {_, 30} ->21.5, {i_, i_} -> i}, {50, 50}]

SparseArray[<148>, {50, 50}]

This shows a visual representation of the matrix elements.

ArrayPlot [m]
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Here are the four largest eigenvalues of the matrix.
Eigenvalues[m, 4]

{129.846, -92.6878, 49.7867, 48.7478}

Dot gives a SparseArray result.
m.m

SparseArray[<2500>, {50, 50}]

You can extract parts just like in an ordinary array.
%[[20, 20]]

647.25

You can apply most standard structural operations directly to sparseArray objects, just as you
would to ordinary lists. When the results are sparse, they typically return sparseArray objects.

Dimensions [m] the dimensions of an array

ArrayRules [m] the rules for nonzero elements in an array
m[[i,j]] element i, j

m[[i]] the it" row

m|[a11,]] the /" column

m[[i,jl]=v reset element i, j

A few structural operations that can be done directly on SparseArray objects.

This gives the first column of m. It has only 2 nonzero elements.
m[[All, 1]]

SparseArray[<2>, {50}]

This adds 3 to each element in the first column of m.
m[[All, 1]] = 3 +m[[All, 1]]

SparseArray[<2>, {50}, 3]

Now all the elements in the first column are nonzero.
m[[All, 1]]

SparseArray[<50>, {50}]
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This gives the rules for the nonzero elements on the second row.
ArrayRules[m[[2]]]
({1} >3, {2} 52, {30} >21.5, {_} >0}

SparseArray [rules] generate a sparse array from rules
CoefficientArrays|[{eqns,,eqnsy,...} , {xX1,X2,...}]
get arrays of coefficients from equations

Import [ " file.mtx"] import a sparse array from a file

Typical ways to get sparse arrays.

This generates a tridiagonal random matrix.
SparseArray[{i_, j_} /; Abs[i-Jj] <=1 :> RandomReal[], {100, 100}]

SparseArray[<298>, {100, 100}]

Even the tenth power of the matrix is still fairly sparse.
MatrixPower[%, 10]

SparseArray[<1990>, {100, 100}]

This extracts the coefficients as sparse arrays.
s = CoefficientArrays[{c+x-2==0, x+2y+2z ==0}, {x, vy, 2}]

{SparseArray[<1>, {2}], SparseArray[<5>, {2, 3}]}

Here are the corresponding ordinary arrays.
Normal [%]

{{e, 0}, {{1, 0, -1}, {1, 2, 1}}}

This reproduces the original forms.
s[[1]1] +s[[2]1].{x, ¥, 2}

{c+x-2, X+2y+ 2}

CoefficientArrays can handle general polynomial equations.
s = CoefficientArrays[{c+x"2-2==0, x"2+2y+2"2==0}, {x,y, z}]

{SparseArray|[<1>, {2}], SparseArray[<2>, {2, 3}], SparseArray([<3>, {2, 3, 3}]}
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The coefficients of the quadratic part are given in a rank 3 tensor.
Normal [%]

{{C, 0}, {{0, 0, ’l}l {Ol 21 0}}!
{{{1, o, 0}, {0, 0, 0}, {0, 0, O}}, {{1, O, O}, {O, O, O}, {0, O, 1}}}}

This reproduces the original forms.
s[[1]1] +s[[2]].{x, ¥y, 2} +s[[3]].{x, ¥, 2}.{%x, ¥, 2}

{c+x2—z,x2+2y+zz}

For machine-precision numerical sparse matrices, Mathematica supports standard file formats
such as Matrix Market (.mtx) and Harwell-Boeing. You can import and export matrices in these

formats using Import and Export.

Series, Limits and Residues

Sums and Products

This constructs the sum 2,7:1 f—

Sum[x"i/i, {i, 1, 7}]

2 3 4

X X X X X X
X+ —+ —+ — + — + — + —

2 3 4 5 6 7

5 6 7

You can leave out the lower limit if it is equal to 1.
Sum[x"*i /i, {i, 7}]

2 3 4 5 6 7

X X X X X X
X+ —+ —+ —+ — + — + —

2 3 4 5 6 7

This makes i increase in steps of 2, so that only odd-numbered values are included.
Sum[x"~i/i, {i, 1, 5, 2}]

3 5

X X
X+ — + —

3 5
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Products work just like sums.
Product[x+1i, {i, 1, 4}]

(l+x) (2+x) (3+x) (4+x)

Sum [f, {iliminlimwc}]

Sum [fr {iliminlimwcrdi}]

Sum [fr {iriminrimax} ’ {jljminrjmax}}

Product [f, {i,iminlimax} 1

Sums and products.

the sum X f

the sum with i increasing in steps of di

the nested sum Z,;Z‘;‘_ Z;?"‘“’ f

=Jmin

the product [ f

This sum is computed symbolically as a function of n.

sum[i~2, {i, 1, n}]

1
—n(l+n) (1+2n)
6

Mathematica can also give an exact result for this infinite sum.

Sum[l/i"4, {i, 1, Infinity}]

As with integrals, simple sums can lead to complicated results.

Sum[x” (i (i+1)), {i, 1, Infinity}]

~2xY/4 + EllipticTheta[2, 0, x|

2 Xl/4

This sum cannot be evaluated exactly using standard mathematical functions.

Sum[l/ (i!+ (21i)!), {i, 1, Infinity}]

o 1
;i!+(2i)l

You can nevertheless find a numerical approximation to the result.

N[%]
0.373197
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Mathematica also has a notation for multiple sums and products.

sum [ f, (i, iminr bmax}r (Jr Jmine Jmar}] Fepresents a sum over i and j, which would be written in

standard mathematical notation as Y/ 2; f. Notice that in Mathematica notation, as in

Sbnin “J=Jmin

standard mathematical notation, the range of the outermost variable is given first.

This is the multiple sum Zlezz.zlx" y/. Notice that the outermost sum over i is given first, just
as in the mathematical notation.
Sum[x*iy~j, {i, 1, 3}, {j, 1, i}]

xy+x2y+xly+x2y?+x3y? 4 x3y°

The way the ranges of variables are specified in sum and Product is an example of the rather
general iterator notation that Mathematica uses. You will see this notation again when we
discuss generating tables and lists using Table ("Making Tables of Values"), and when we
describe Do loops ("Repetitive Operations").

{Tmax } iterate i,,, times, without incrementing any variables
10 o Ve i goes from 1 to iy, in steps of 1

{4y Ein r bnax } i goes from i,,;, to i, in steps of 1

{0, Lnin r bmax 1 di } i goes from i,,;, to i,.. in steps of di

180Gt 0 Bmam b 0 {0 Jitn 0 Jiass } 0 0oo i goes from i,,;, to i, and for each such value, j goes

from jmin to jmax; etc.

Mathematica iterator notation.

Power Series

The mathematical operations we have discussed so far are exact. Given precise input, their
results are exact formulas.

In many situations, however, you do not need an exact result. It may be quite sufficient, for

example, to find an approximate formula that is valid, say, when the quantity x is small.

This gives a power series approximation to (1 +x)" for x close to 0, up to terms of order x°.
Series[(l+x)"n, {x, 0, 3}]
1 1

l+nx+ — (—l+n)nx2+f (-2 +n) (—1+n)nx3+0[x]
2 6

4
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Mathematica knows the power series expansions for many mathematical functions.
Series[Exp[-at] (1 +Sin[2t]), {t, 0, 4}]

2
1
t?+ — (32a-8a*+a*) t*+0[t]?

24

4 a3
o +a?-
3 6

a
-2a+ —
2

1+ (2-a)t+ t2 4

If you give it a function that it does not know, Series writes out the power series in terms of
derivatives.
Series[1l+ £f[t], {t, 0, 3}]

1 1

(1+£[0]) +£[0]t+—£7[0]t2+ —£3[0]t3+0[t]*
2 6

Power series are approximate formulas that play much the same role with respect to algebraic
expressions as approximate numbers play with respect to numerical expressions. Mathematica
allows you to perform operations on power series, in all cases maintaining the appropriate order

or "degree of precision" for the resulting power series.

Here is a simple power series, accurate to order x°.
Series[Exp[x], {x, 0, 5}]

x? x3  x* x5

l+xX+ —+ —+ — +

2 6 24 120

+0[x]°

When you do operations on a power series, the result is computed only to the appropriate order
in x.
%"2 (1+%)

13x?2 35x%% 97x* 55%°

2+5x+ + + + +0[X]6
2 6 24 24

This turns the power series back into an ordinary expression.
Normal [%]
13x? 35x* 97x* 55%°

2+5x+ + + +
2 6 24 24

Now the square is computed exactly.
%" 2
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Applying Expand gives a result with 11 terms.

Expand [%]
265x% 467x* 1505x> 7883 x%° 1385x’ 24809x® 5335x° 3025x!°

+ + + + +

4+20x+51x%+ + +
3 4 12 72 18 576 288 576

Series [expr, {x,xo,n}] find the power series expansion of expr about the point
X = xo to at most n™" order

Normal [series] truncate a power series to give an ordinary expression

Power series operations.

Making Power Series Expansions

find the power series expansion of expr about the point

Series [expr, {x,xy,n}]
X = xo to order at most (x - xp)”

series [expr, {x,xo,nc}, {ysyo,ny} ]
find series expansions with respect to y then x

Functions for creating power series.

Here is the power series expansion for exp(x) about the point x =0 to order x*.

Series[Exp[x], {x, 0, 4}]

x?  x3 x4

l+x+—+—+—+0[x]5
2 6 24

Here is the series expansion of exp(x) about the point x =1.

Series[Exp[x], {x, 1, 4}]
1 1 1

e+e(x-1)+—e(x-1)?+ —e(x-1)°+ —e (x-1)*+0[x-1]°
2 6 24

If Mathematica does not know the series expansion of a particular function, it writes the result
symbolically in terms of derivatives.
Series[f[x], {x, 0, 3}]

1 1

£[O0] + £[0] x+ —£7[0] x2+ —£3[0] x°+0[x]*
2 6
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In mathematical terms, series can be viewed as a way of constructing Taylor series for func-

tions.

The standard formula for the Taylor series expansion about the point x=x, of a function g(x)

—X, K
with k" derivative g®(x) is g(x):z‘;ziog(’”(xo)(xk—‘"). Whenever this formula applies, it gives the

same results as Sseries. (For common functions, series nevertheless internally uses somewhat

more efficient algorithms.)

Series can also generate some power series that involve fractional and negative powers, not

directly covered by the standard Taylor series formula.

Here is a power series that contains negative powers of x.
Series[Exp[x] /x"2, {x, 0, 4}]

1 1 1 x x? x3 x4
— = =+ — + — + +

x2 x 2 6 24 120 720

+0[x]°

Here is a power series involving fractional powers of x.
Series[Exp[Sqrt([x]], {x, 0, 2}]

x  x3/2 x2 )
l+Vx +—+ +—+O[x}5/2
2 6 24

Series can also handle series that involve logarithmic terms.
Series[Exp[2 x] Log[x], {x, 0, 2}]

Log[x] + 2Log[x] x + 2 Log[x] x% + O[x]3

There are, of course, mathematical functions for which no standard power series exist. Mathe-

matica recognizes many such cases.

Series sees that exp(%) has an essential singularity at x =0, and does not produce a power
series.
Series[Exp[1l/x], {x, 0, 2}]

1

ex
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Series can nevertheless give you the power series for exp()]—c) about the point x = co.

Series[Exp[1l/ x], {x, Infinity, 3}]

2 1 3 1 4
+O{7}

+ —

6

1 1
1+ —+ —
X 2

1

X

1

X

Especially when negative powers occur, there is some subtlety in exactly how many terms of a

particular power series the function series will generate.

One way to understand what happens is to think of the analogy between power series taken to
a certain order, and real numbers taken to a certain precision. Power series are "approximate

formulas" in much the same sense as finite-precision real numbers are approximate numbers.

The procedure that series follows in constructing a power series is largely analogous to the
procedure that N follows in constructing a real-number approximation. Both functions effectively
start by replacing the smallest pieces of your expression by finite-order, or finite-precision,
approximations, and then evaluating the resulting expression. If there are, for example, cancella-
tions, this procedure may give a final result whose order or precision is less than the order or
precision that you originally asked for. Like N, however, series has some ability to retry its
computations so as to get results to the order you ask for. In cases where it does not succeed,

you can usually still get results to a particular order by asking for a higher order than you need.

Series compensates for cancellations in this computation, and succeeds in giving you a result
to order x3.
Series[Sin[x] /x"2, {x, 0, 3}]

When you make a power series expansion in a variable x, Mathematica assumes that all objects
that do not explicitly contain x are in fact independent of x. series thus does partial derivatives
(effectively using D) to build up Taylor series.

Both a and n are assumed to be independent of x.

Series[(a+x)"n, {x, 0, 2}]

a"+al'®nx+ —a?® (-1+n)nx®+0[x]?

2
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a[x] is now given as an explicit function of x.
Series[(a[x] +x) "n, {x, 0, 2}]
1 1

al[0]®+na[0] ¥ (1+a’[0])x+|— (-1+n)naf0] 2" (1+a'[0])2+ —naf0] ™ a”[0]|x®+0[x]?
2 2

You can use Series to generate power series in a sequence of different variables. series works

like Integrate, sum and so on, and expands first with respect to the last variable you specify.

Series performs a series expansion successively with respect to each variable. The result in
this case is a series in x, whose coefficients are series in y.
Series[Exp[xy], {x, 0, 3}, {y, O, 3}]

2

Yy
— +o0[y)*
2

y3

— +0[y)*
6

2

X+ x3+0[x]4

1+ (y+0[y]4>x+

The Representation of Power Series

Power series are represented in Mathematica as SeriesData objects.

The power series is printed out as a sum of terms, ending with O [x] raised to a power.
Series[Cos[x], {x, 0, 4}]

2 4

X X
1- —+ —+0[x]°
2 24

Internally, however, the series is stored as a SeriesData object.
InputForm[%]

SeriesDatal[x, 0, {1, 0, -1/2, 0, 1/24}, 0, 5, 1]

By using seriesData objects, rather than ordinary expressions, to represent power series,
Mathematica can keep track of the order and expansion point, and do operations on the power
series appropriately. You should not normally need to know the internal structure of

SeriesData objects.

You can recognize a power series that is printed out in standard output form by the presence of
an O[x] term. This term mimics the standard mathematical notation O(x), and represents omit-
ted terms of order x. For various reasons of consistency, Mathematica uses the notation 0[x] *n
for omitted terms of order x", corresponding to the mathematical notation O(x)", rather than the

slightly more familiar, though equivalent, form o(x").
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Any time that an object like o[x] appears in a sum of terms, Mathematica will in fact convert

the whole sum into a power series.

The presence of 0 [x] makes Mathematica convert the whole sum to a power series.
ax+Exp[x] +0[x] "3

XZ

1+ (l+a)x+—+0([x]
2

3

Series objects can involve fractional powers.
Series[Sqrt[l1-x"3], {x, 1, 5}]

1 i(x-1)%/7? i(x-1)72 111 (x-1)%2 )
i3 x-1 +—1i+/3 (x-1)%2+ + - + +0[x-1]/2
2 83 163 384+/3

Here is the series' internal representation.
% // InputForm

SeriesData[x, 1, {I*Sqrt[3], 0, (I/2)*Sqrt[3], O, (I/8)/Sqgrt[3], O, (-I/16)/Sqgrt[31, 0, ((
2]

Series can involve logarithmic terms.
Series[x"x, {x, 0, 4}]
1 1 1

1 +Log[x] x + —Log[x]zx2 + —Loc_;[x]3><3 + —Log[x]‘lx4 +O[x]5
24

The logarithmic factors appear explicitly inside the SeriesData coefficient list.
% // InputForm

SeriesData[x, 0, {1, Log[x], Log[x]"2/2, Log[x]"3/6, Log[x]"4/24}, 0, 5, 1]

Operations on Power Series

Mathematica allows you to perform many operations on power series. In all cases, Mathematica

gives results only to as many terms as can be justified from the accuracy of your input.

Here is a power series accurate to fourth order in x.
Series[Exp[x], {x, 0, 4}]

2 4

x x3  x
l+x+ —+ —+ — +0[x]
2 6 24

5
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When you square the power series, you get another power series, also accurate to fourth order.
%" 2

4x®  2x*

1+2x+2x%x%+

3 3

Taking the logarithm gives you the result 2 x, but only to order x*.
Log[%]

2x+0[x]°

Mathematica keeps track of the orders of power series in much the same way as it keeps track
of the precision of approximate real numbers. Just as with numerical calculations, there are

operations on power series which can increase, or decrease, the precision (or order) of your

results.

Here is a power series accurate to order x'°,
Series[Cos[x], {x, 0, 10}]

x?  x

1- —+ — -

¥ -
2 24 720 40320 3628800

4 %6 %8 %10

+0o[x]1?

This gives a power series that is accurate only to order x°.

1/ (1-%)

2 1 x? x4 x5
— + — + + +

x2 6 120 3024 86400

+0[x]7

Mathematica also allows you to do calculus with power series.

Here is a power series for tan (x).
Series[Tan[x], {x, 0, 10}]
x3 2x> 17x7 62%°

X+ — + + +

3 15 315 2835

+0o[x]1?

Here is its derivative with respect to x.
D[%, x]
2x*  17x% 62x%8

+ +

3 45 315

+0[x]1°

1+x%+
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Integrating with respect to x gives back the original power series.
Integrate[%, x]
x3 2x> 17x7 62%°

X+ — + + +

3 15 315 2835

+0[x]

When you perform an operation that involves both a normal expression and a power series,

Mathematica "absorbs" the normal expression into the power series whenever possible.

The 1 is automatically absorbed into the power series.
1 + Series[Exp[x], {x, 0, 4}]

x? x3 x*
2+xXx+ —+ —+ — +0[x]

2 6 24

5

The x " 2 is also absorbed into the power series.
%+x"2

If you add sin[x], Mathematica generates the appropriate power series for Sin[x], and
combines it with the power series you have.

%+ Sin[x]
3x? x4
24+2x+ + — +0[x]°
2 24

Mathematica also absorbs expressions that multiply power series. The symbol a is assumed to
be independent of x.

(a+x)%"2

29 a
x4 +0[x]°

4a+ (4+8a)x+ (8+10a)x’+ (10+6a) x3+[6+

12

Mathematica knows how to apply a wide variety of functions to power series. However, if you

apply an arbitrary function to a power series, it is impossible for Mathematica to give you any-
thing but a symbolic result.

Mathematica does not know how to apply the function £ to a power series, so it just leaves the
symbolic result.

f[Series[Exp[x], {x, 0, 3}]]

x? x3

fli+x+ —+ — +0[x)*
2 6
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Composition and Inversion of Power Series

When you manipulate power series, it is sometimes convenient to think of the series as repre-

senting functions, which you can, for example, compose or invert.

ComposeSeries [series; ,series;, ...] compose power series

InverseSeries [series, x| invert a power series

Composition and inversion of power series.

Here is the power series for exp(x) to order x°.
Series[Exp[x], {x, 0, 5}]

2 4 5

x x3  x
l+x+ —+ —+ — +

2 6 24 120

X
+0[x]°

This replaces the variable x in the power series for exp(x) by a power series for sin(x).

ComposeSeries[%, Series[Sin[x], {x, 0, 5}]]

The result is the power series for exp(sin(x)).
Series[Exp[Sin[x]], {x, 0, 5}]

If you have a power series for a function f(y), then it is often possible to get a power series
approximation to the solution for y in the equation f(y)=x. This power series effectively gives
the inverse function f~!(x) such that f(f“(x)) =x. The operation of finding the power series for an

inverse function is sometimes known as reversion of power series.

Here is the series for sin(y).

Series[Sin[y], {y, 0, 5}]
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Inverting the series gives the series for sin‘l(x).
InverseSeries[%, x]

x3  3x°

X+ — +

6 40

+0[x]°

This agrees with the direct series for sin"(x).
Series[ArcSin[x], {x, 0, 5}]
x3 3%

X+ — +

6 40

+0[x]°®

Composing the series with its inverse gives the identity function.

ComposeSeries[%, %%%]

y+0[y]®

Converting Power Series to Normal Expressions

Normal [expr] convert a power series to a normal expression

Converting power series to normal expressions.

Power series in Mathematica are represented in a special internal form, which keeps track of

such attributes as their expansion order.

For some purposes, you may want to convert power series to normal expressions. From a
mathematical point of view, this corresponds to truncating the power series, and assuming that

all higher-order terms are zero.

This generates a power series, with four terms.
t = Series[ArcTan[x], {x, 0, 8}]

x} x> x

X- —+ — - —+0[x
3 5 7

7
}9

Squaring the power series gives you another power series, with the appropriate number of
terms.

t~2

2xt  23x% 44xt

+

3 45 105

+0[x]1°

x4 -
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Normal truncates the power series, giving a normal expression.
Normal [%]
2xt 23x5 44xt

+

3 45 105

You can now apply standard algebraic operations.
Factor[%]
1

-—— %% (-315+ 210 x* - 161 x* + 132 x%)
315

SeriesCoefficient [series,n] give the coefficient of the nt"-order term in a power series

Extracting coefficients of terms in power series.

This gives the coefficient of x in the original power series.

SeriesCoefficient[t, 7]
1

7

This gives the coefficient for the term x" in the Taylor expansion of the function e about zero.
SeriesCoefficient[E"x"2, {x, 0, n}]

KroneckerDelta[Mod[n, 2]]

!

N B

Solving Equations Involving Power Series

LogicalExpand [series|==series, ] give the equations obtained by equating corresponding
coefficients in the power series

Solve [series|==seriesy, {aj ,ar,...}] solve for coefficients in power series

Solving equations involving power series.

Here is a power series.
y=1+Sum[a[i] x"i, {i, 3}] +0[x] "4

l+a[l]x+a[2]x*+a[3] x> +0[x]*
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This gives an equation involving the power series.
D[y, x]"2-y==x

(-1+a[1)?) + (-a[1] +4a[l] a[2]) x+ (-a[2] +4a[2]®+6a[l] a[3]) x* +O[x]’ =x

LogicalExpand generates a sequence of equations for each power of x.
LogicalExpand[%]

“1+af[l]2=0&&-1-a[l] +4a[l]af[2] =0&&-a[2] +4a[2]®+6a[l]a[3] =

This solves the equations for the coefficients a[i]. You can also feed equations involving power
series directly to Solve.

Solve[%]

1 1
{{a[3] S, a[l]>1, a[2] - 7}, (a[3] >0, a[l] - -1, a[2] 90}}
12 2

Some equations involving power series can also be solved using the InversesSeries function

discussed in "Composition and Inversion of Power Series".

Summation of Series

sum [expr, {n, Min s Mnax } ] find the sum of expr as n goes from n,,;, t0 1,4

Evaluating sums.

Mathematica recognizes this as the power series expansion of ¢*.
Sum[x”“n/n!, {n, 0, Infinity}]

e*

This sum comes out in terms of a Bessel function.

Sum[x”“n/ (n!"2), {n, 0, Infinity}]

Bessell {0, 2 \/?}
Here is another sum that can be done in terms of common special functions.
Sum[n! x"n/ (2n) !, {n, 1, Infinity}]

ie"/" ﬁﬁErf{E}

2 2
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Generalized hypergeometric functions are not uncommon in sums.
Sum[x"n/ (n!"4), {n, 0, Infinity}]

HypergeometricPFQ[{}, {1, 1, 1}, x]

There are many analogies between sums and integrals. And just as it is possible to have indefi-

nite integrals, so indefinite sums can be set up by using symbolic variables as upper limits.

This is effectively an indefinite sum.
Sum[k, {k, 0, n}]
1

—n (1 +n)
2

This sum comes out in terms of incomplete gamma functions.
Sum[x"k/k!, {k, 0, n}]

e* (1+n) Gamma[l +n, x]

Gamma[2 + n]

This sum involves polygamma functions.
Sum[l / (k+ 1) A4I {kl ol n}]

a1

— - —PolyGamma [3, 2 +n]
90 6

Taking the difference between results for successive values of n gives back the original sum-
mand.

FullSimplify[%- (% /.n->n-1)]
1

(1+n)*

Mathematica can do essentially all sums that are found in books of tables. Just as with indefi-
nite integrals, indefinite sums of expressions involving simple functions tend to give answers
that involve more complicated functions. Definite sums, like definite integrals, often, however,

come out in terms of simpler functions.

This indefinite sum gives a quite complicated result.
Sum[Binomial[2k, k] /3" (2k), {k, O, n}]

9\ Imn 3 ; 3 4
(;) Gamma{; + n] Hypergeometric2F1l|1, PR 2+n, 5

3
\/? \/7Gamma[2+n]
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The definite form is much simpler.
Sum[Binomial[2k, k] /3" (2k), {k, 0, Infinity}]

3

Vs

Here is a slightly more complicated definite sum.
Sum[PolyGammal[k] / k"2, {k, 1, Infinity}]

(-EulerGamma 5 + 6 Zeta[3])

[

Solving Recurrence Equations

If you represent the »™ term in a sequence as a[n], you can use a recurrence equation to specify

how it is related to other terms in the sequence.

RSolve takes recurrence equations and solves them to get explicit formulas for a[n].

This solves a simple recurrence equation.
RSolve[{a[n] == 2a[n-1], a[l] == 1}, a[n], n]

({atn) >27))

This takes the solution and makes an explicit table of the first ten a[n].
Table[a[n] /. First[%], {n, 10}]
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512}

RSolve [egn,a[n] ,n] solve a recurrence equation

Solving a recurrence equation.

This solves a recurrence equation for a geometric series.
RSolve[{a[n] ==ra[n-1] +1, a[l] == 1}, a[n], n]

(fotm - 277

-1+r"

-l+r
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This gives the same result.
RSolve[{a[n+ 1] ==ra[n] +1, a[l] == 1}, a[n], n]

(form» =)

-1+z"

-l+r

This gives an algebraic solution to a recurrence equation.
RSolve[{a[n] ==4a[n-1] +a[n-2]}, a[n], n]

{{atm1 - (Lﬁ]ncm + [2+\/?)ncm}}

This solves the Fibonacci recurrence equation.
RSolve[{a[n] == a[n-1] +a[n-2], a[l] == a[2] == 1}, a[n], n]

{{a[n] » Fibonacci[n]}}

RSolve can be thought of as a discrete analog of DSolve. Many of the same functions gener-
ated in solving differential equations also appear in finding symbolic solutions to recurrence

equations.

This generates a gamma function, which generalizes the factorial.
RSolve[{a[n] ==na[n-1], a[l] == 1}, a[n], n]

{{a[n] >Gamma[l + n] }}

This second-order recurrence equation comes out in terms of Bessel functions.
RSolve[{a[n+ 1] ==na[n] +a[n-1], a[l] == 0, a[2] == 1}, a[n], n]

(= )

BesselI[n, -2] BesselK[1l, 2] + BesselI[1l, 2] BesselK[n, 2]

BesselI[2, 2] BesselK[1l, 2] + BesselI[1l, 2] BesselK[2, 2]

RSolve does not require you to specify explicit values for terms such as a[1]. Like DSolve, it

automatically introduces undetermined constants c[i] to give a general solution.

This gives a general solution with one undetermined constant.
RSolve[a[n] ==na[n-1], a[n], n]

{{a[n] >C[1] Gamma[l +n]}}
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RSolve can solve equations that do not depend only linearly on «[n]. For nonlinear equations,
however, there are sometimes several distinct solutions that must be given. Just as for differen-
tial equations, it is a difficult matter to find symbolic solutions to recurrence equations, and

standard mathematical functions only cover a limited set of cases.

Here is the general solution to a nonlinear recurrence equation.

RSolve[{a[n] == a[n+1] a[n-1]}, a[n], n]

{{a[n] PCIEY cos[“}l]wm Sm"ﬂ}}

This gives two distinct solutions.

RSolve[a[n] == (a[n+1] a[n-1]) "2, a[n], n]

{{a[n] S eCl2) Ccs[nArcTan[\/;H+C[l] Sin[nArcTan[\/;H}, {a[n] . e%m[z] Cos'nArcTan[\/T'%cm sin[nArcTan\/;HH
RSolve can solve not only ordinary difference equations in which the arguments of a differ by

integers, but also g-difference equations in which the arguments of « are related by multiplica-

tive factors.

This solves the g-difference analog of the factorial equation.

RSolve[a[gn] ==na[n], a[n], n]

1 ( Log[n]

{{a[n] Sn? = C[l]}}

Here is a second-order g-difference equation.
RSolve[a[n] == a[gn] +a[n/q], a[n], n]

nLog[n] nLog([n]

I

] +c[2] Sin{

{{a[n]eC[l]Cos[3Log[q] ttosla

RSolve [ {egn,,eqn,, ...} ,{ai[n] ;ax[n],...} ,n]
solve a coupled system of recurrence equations

Solving systems of recurrence equations.

This solves a system of two coupled recurrence equations.
RSolve[{a[n] ==b[n-1] +n, b[n] ==a[n-1] -n, a[l] ==b[1] == 1}, {a[n], b[n]}, n]
1 1

Ha[n] 5> — (443 (-1)"+ (-1)2% 42 (-1)?"n), b[n] > — (4 -3 (-1)" - (-1)2" -2 (—1)2"n)}}
4 4
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RSolve [egns,a[ny,ny,...] , {ni,np,...}]
solve partial recurrence equations

Solving partial recurrence equations.

Just as one can set up partial differential equations that involve functions of several variables,
so one can also set up partial recurrence equations that involve multidimensional sequences.
Just as in the differential equations case, general solutions to partial recurrence equations can

involve undetermined functions.

This gives the general solution to a simple partial recurrence equation.

RSolve[a[i+1, j+1] ==ija[i, j], a[i, j], {i, §}]

{{ati, 31>

Gamma[i] Gamma[j] C[1] [i - J] }}

Gamma [l - i+ j]

Finding Limits
In doing many kinds of calculations, you need to evaluate expressions when variables take on

particular values. In many cases, you can do this simply by applying transformation rules for

the variables using the /. operator.

You can get the value of cos (xz) at 0 just by explicitly replacing x with 0, and then evaluating

the result.
Cos[x"2] /. x->0
1

In some cases, however, you have to be more careful.

sin (x)

when x=0. If you simply replace

Consider, for example, finding the value of the expression

sin (x)

. To find the correct value of —

olo

x by 0 in this expression, you get the indeterminate result

when x =0, you need to take the /imit.

Limit [expr,x—>xp] find the limit of expr when x approaches x,

Finding limits.
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This gives the correct value for the limit of 0 as x - 0.

X
Limit[Sin[x] / x, x -> 0]
1

No finite limit exists in this case.
Limit[Sin[x] /x"2, x -> 0]

[ee]

Limit can find this limit, even though you cannot get an ordinary power series for xlog (x) at
x=0.

Limit[x Log[x], x -> 0]

0

The same is true here.
Limit[(1+2%x)"(1/%x), x->0]

eZ

The value of Sign[x] atx =0is 0.
Sign[0]
0

Its /imit, however, is 1. The limit is by default taken from above.
Limit[Sign[x], x -> 0]
1

Not all functions have definite limits at particular points. For example, the function sin(1/x)
oscillates infinitely often near x=0, so it has no definite limit there. Nevertheless, at least so
long as x remains real, the values of the function near x=0 always lie between -1 and 1. Limit

represents values with bounded variation using Interval objects. In general, Interval [ {x,,,

Xmax} ] represents an uncertain value which lies somewhere in the interval x,,, to x,.4.

Limit returns an Interval object, representing the range of possible values of sin (1/x) near
its essential singularity at x =0.
Limit[Sin[1/x], x -> 0]

Interval[{-1, 1}]
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Mathematica can do arithmetic with Interval objects.
(L+%) "3

Interval[{0, 8}]

Mathematica represents this limit symbolically in terms of an Interval object.
Limit [Exp[Sin[x]], x -> Infinity]
1
Int 14—,
nterva [{e eH
Some functions may have different limits at particular points, depending on the direction from
which you approach those points. You can use the Direction option for Limit to specify the

direction you want.

Limit [expr,x->x,Direction->1] find the limit as x approaches x, from below

Limit [expr,x->xo,Direction->-1]| find the limit as x approaches x, from above

Directional limits.

The function 1/x has a different limiting value at x =0, depending on whether you approach
from above or below.

Plot[1/x, {x, -1, 1}]

\
‘\10 r

Approaching from below gives a limiting value of —.
Limit[1/x, x -> 0, Direction -> 1]

-

Approaching from above gives a limiting value of .
Limit[1/x, x -> 0, Direction -> -1]

@

Limit makes no assumptions about functions like £[x] about which it does not have definite

knowledge. As a result, Limit remains unevaluated in most cases involving symbolic functions.
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Limit has no definite knowledge about £, so it leaves this limit unevaluated.
Limit[x £[x], x -> 0]

Limit[x f[x], x> 0]

Residues

Limit [expr, x -> xy] tells you what the value of expr is when x tends to x,. When this value is
infinite, it is often useful instead to know the residue of expr when x equals x,. The residue is

given by the coefficient of (x — xy)~! in the power series expansion of expr about the point x;.

Residue [expr, {x,x0} ] the residue of expr when x equals xg

Computing residues.

The residue here is equal to 1.
Residue[l / x, {x, 0}]
1

The residue here is zero.
Residue[l/x"2, {x, 0}]
0

Residues can be computed at the point at infinity.
Residue[l / x, {x, ComplexInfinity}]

-1

Padé Approximation

The Padé approximation is a rational function that can be thought of as a generalization of a
Taylor polynomial. A rational function is the ratio of polynomials. Because these functions only
use the elementary arithmetic operations, they are very easy to evaluate numerically. The
polynomial in the denominator allows you to approximate functions that have rational

singularities.
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PadeApproximant [f, {x,x9, {n,m}}] give the Padé approximation to f centered at x, of order
(n, m)

PadeApproximant [ f, {x,xo,n} ] give the diagonal Padé approximation to f centered at x
of order n

Padé approximations.

More precisely, a Padé approximation of order (n,m) to an analytic function f(x) at a regular

point or pole x, is the rational function % where p(x) is a polynomial of degree n, ¢(x) is a polyno-

mial of degree m, and the formal power series of f(x)g(x) — p(x) about the point x, begins with the
term (x — xo)""*!. If m is equal to n, the approximation is called a diagonal Padé approximation of

order n.

Here is the Padé approximation of order (2, 4) to cos(x) at x=0.
PadeApproximant [Cos[x], {x, 0, {2, 4}}]

61 x?
150

7 x? x4
+

1+ —
75 200

This gives another Padé approximation of the same order.
pd = PadeApproximant[e*, {x, 1, {2, 4}}]

1 1 2
e+3<e( 1+x)+30e(1+x)

2 . 21 3, 4
1 3(1+X)+5(1+X) 30(1+X) +360(1+X)

The initial terms of this series vanish. This is the property that characterizes the Padé approxima-
tion.

Series[e* Denominator[pd] - Numerator[pd], {x, 1, 8}]

e(x-1)" e (x-1)8
+ +0[x-1]°
75600 120960
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This plots the difference between the approximation and the true function. Notice that the
approximation is very good near the center of expansion, but the error increases rapidly as you
move away.

Plot[pd - e*, {x, 0, 2}]

0.00001

5.x10°

‘1.0““1.‘ 20

-5.x10°°F

~0.00001 |

In Mathematica padeApproximant is generalized to allow expansion about branch points.

This gives the diagonal Padé approximation of order 1 to a generalized rational function at x =0.

Sqrt[x]

PadeApproximant [ . {x, 0,1} ]

(1+8Sqrt[x]) "3
N

8Vx
+

1+ 2x
3

This gives the diagonal Padé approximation of order 5 to the logarithm of a rational function at
the branch point x =0.

PadeApproximant[Log[ ], {x, O, 5}]
l+x
. 47x? 11x* 137 x°

36 36 7560

+ Log [x]

The series expansion of the function agrees with the diagonal Padé approximation up to order
10.

X

Series[%—Log[l ], {x, 0, 11}]
+X

X

+0[x]*?
698544
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Calculus

Differentiation
D[f,x] partial derivative %f
D[f,x,y,...] multiple derivative %%...f
D[f {x,n}] nth derivative %f

D [f,x,NonConstants—>{v1,vz,...}]

:—xf with the v; taken to depend on x

Partial differentiation operations.

L d ,
This gives PR
D[x"n, x]

n xfl+n

This gives the third derivative.
D[x"n, {x, 3}]

(-2+n) (-1+n)nx 3™

You can differentiate with respect to any expression that does not involve explicit mathematical
operations.
D[x[1]"2+x[2]"2, x[1]]

2x[1]

D does partial differentiation. It assumes here that y is independent of x.
D[x"2+y"2, x]

2x
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If y does in fact depend on x, you can use the explicit functional form y [x]. "The Representa-
tion of Derivatives" describes how objects like y ' [x] work.

D[x"2+y[x] "2, x]

2x+2y[x] ¥ [Xx]

Instead of giving an explicit function y [x], you can tell D that y implicitly depends on x.
D[y, X, NonConstants -> {y}] then represents %, with y implicitly depending on x.

D[x"2+y"2, x, NonConstants -> {y}]

2x+2yD[y, X, NonConstants - {y}]

DIf, {{x1,%,...7}] the gradient of a scalar function f(0f/dx,df/dx,, ...)
D{f, {{x1,%,...3,2}] the Hessian matrix for f

D[f, {{x1,X2,...},n}] the n™-order Taylor series coefficient
D[{firfor---}r{{x1sXx2,...3}] the Jacobian for a vector function f

Vector derivatives.

This gives the gradient of the function x? + y2.
D[x"2+y"2, {{x, y}}]
{2%, 2y}

This gives the Hessian.
D[x"2+y"2, {{x, ¥}, 2}]
{{2, 0}, {0, 2}}

This gives the Jacobian for a vector function.
D[{x"2+y"2, xy}, {{x, y}}]

{2x, 2y}, {y, x}}
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Total Derivatives

Dt [f] total differential d f
Dt [f,x] total derivative %
Dt [f,x,y,...] multiple total derivative dd—x diy o f

Dt [f,x,Constants—>{c1 ,cz,...}]

total derivative with ¢; constant (i.e., d¢; = 0)
y/:Dt[y,x]=0 set % =0
SetAttributes [c,Constant | define ¢ to be a constant in all cases

Total differentiation operations.

When you find the derivative of some expression f with respect to x, you are effectively finding
out how fast f changes as you vary x. Often f will depend not only on x, but also on other
variables, say y and z. The results that you get then depend on how you assume that y and z
vary as you change x.

There are two common cases. Either y and 7 are assumed to stay fixed when x changes, or they

are allowed to vary with x. In a standard partial derivative %, all variables other than x are

assumed fixed. On the other hand, in the total derivative %, all variables are allowed to change

with x.

In Mathematica, D[f, x] gives a partial derivative, with all other variables assumed indepen-
dent of x. Dt [f, x] gives a total derivative, in which all variables are assumed to depend on x.

In both cases, you can add an argument to give more information on dependencies.

This gives the partial derivative ;—x(x2 +)?). y is assumed to be independent of x.
D[x"2+y"2, x]

2x

This gives the total derivative dd—x (% +*). Now y is assumed to depend on x.

Dt[x"2+y"2, x]

2x+2yDt(y, x]



dy
You can make a replacement for o

% /. Dt[y, x] -> yp

2x+2yyp
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You can also make an explicit definition for j—‘z. You need to use y /: to make sure that the

definition is associated with y.
y/:Dt[y, x] =0
0

With this definition made, Dt treats y as independent of x.
Dt[x"2+y"2+2"2, x]

2x+22zDt[z, x]

This removes your definition for the derivative of y.

Clear|[y]

This takes the total derivative, with z held fixed.
Dt[x"2+y"2+2"2, x, Constants -> {z}]

2x+2yDt([y, x, Constants - {z}]

This specifies that c is a constant under differentiation.
SetAttributes[c, Constant]

The variable c is taken as a constant.
Dt[a”"2+cx"2, X]

2cx+2abDbDt[a, x]

The function c is also assumed to be a constant.
Dt[a"2 +c[x] x" 2, x]

2xc[x] +2aDbDt[a, x]

This gives the total differential d (x* + ¢ ?).
Dt[x"2+cy"2]

2xDt[x] +2cyDt|y]
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You can make replacements and assignments for total differentials.
% /. Dt[y] ->dy

2cdyy+2xDt[x]

Derivatives of Unknown Functions

Differentiating a known function gives an explicit result.
D[Log[x] "2, x]
2 Log [x]

X

Differentiating an unknown function £ gives a result in terms of £ '.
D[f[x] "2, x]
2 f(x] £ [x]

Mathematica applies the chain rule for differentiation, and leaves the result in terms of £ '.
D[x f[x"2], x]

f[xz] + 2 x? f’[xz}

Differentiating again gives a result in terms of £, £ ' and £'".
D[%, x]

6xf’[x2] + 4% f”[xz}

When a function has more than one argument, superscripts are used to indicate how many
times each argument is being differentiated.

D[g[x"2, y"2], x]

2 xg(1,0> [Xz, yz}

This represents :—x :—x %g (x, y). Mathematica assumes that the order in which derivatives are

taken with respect to different variables is irrelevant.
D[g[x, Y], %, %, Y]

2,1)
( [

g X, ¥]
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You can find the value of the derivative when x =0 by replacing x with 0.

%/.x->0
g®vio, v
fx] first derivative of a function of one variable
£ x] nt" derivative of a function of one variable
FI2.0- ) [x] derivative of a function of several variables, n; times with

respect to variable i

Output forms for derivatives of unknown functions.

The Representation of Derivatives

Derivatives in Mathematica work essentially the same as in standard mathematics. The usual
mathematical notation, however, often hides many details. To understand how derivatives are

represented in Mathematica, we must look at these details.
The standard mathematical notation f(0) is really a shorthand for %f(t) li=0, Where ¢ is a
"dummy variable". Similarly, f’(xz) is a shorthand for %f(t) |- As suggested by the notation f’,

the object %f(t) can in fact be viewed as a "pure function", to be evaluated with a particular

choice of its parameter ¢. You can think of the operation of differentiation as acting on a func-

tion f, to give a new function, usually called f’.
With functions of more than one argument, the simple notation based on primes breaks down.
You cannot tell for example whether ¢’(0, 1) stands for %g(t, 1) ;=0 OF %g(O, 1) |,=1, and for almost

any g, these will have totally different values. Once again, however, ¢ is just a dummy variable,

whose sole purpose is to show with respect to which "slot" g is to be differentiated.

In Mathematica, as in some branches of mathematics, it is convenient to think about a kind of
differentiation that acts on functions, rather than expressions. We need an operation that takes
the function f, and gives us the derivative function f’. Operations such as this that act on

functions, rather than variables, are known in mathematics as operators.
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The object £' in Mathematica is the result of applying the differentiation operator to the func-
tion £. The full form of £' is in fact Derivative[1][f]. Derivative[l] is the Mathematica

differentiation operator.

The arguments in the operator Derivative [n;, ny, ...] specify how many times to differentiate
with respect to each "slot" of the function on which it acts. By using operators to represent
differentiation, Mathematica avoids any need to introduce explicit "dummy variables".

This is the full form of the derivative of the function f.
£' // FullForm

Derivative[1l] [f]

Here an argument x is supplied.
f'[x] // FullForm

Derivative[1l] [f] [x]

This is the second derivative.
£f''[x] // FullForm

Derivative([2] [f] [x]

This gives a derivative of the function g with respect to its second "slot".
D[g[x, v], ¥]

(0,1) [

g X, Y]

Here is the full form.
% // FullForm

Derivative([0, 1] [g] [x, Y]

Here is the second derivative with respect to the variable y, which appears in the second slot of
g.
D[g[x, y], {y, 2}] // FullForm

Derivative([0, 2][g] [%, V]

This is a mixed derivative.
D[g[x, Y], x, ¥, Y] // FullForm

Derivative([l, 2] [g] [x, Y]
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Since Derivative only specifies how many times to differentiate with respect to each slot, the
order of the derivatives is irrelevant.
D[g[x, Y], ¥, ¥, X] // FullForm

Derivative([l, 2] [g] [X, Y]

Here is a more complicated case, in which both arguments of g depend on the differentiation
variable.

D[g[x, x], x]

L0

g%V [x, x] + g X, X]

This is the full form of the result.
% // FullForm

Plus [Derivative [0, 1] [g] [k, x], Derivative[l, 0] [g] [x, xX]]

The object £' behaves essentially like any other function in Mathematica. You can evaluate the
function with any argument, and you can use standard Mathematica /. operations to change
the argument. (This would not be possible if explicit dummy variables had been introduced in

the course of the differentiation.)

This is the Mathematica representation of the derivative of a function £, evaluated at the origin.
£'[0] // FullForm

Derivative[1] [£][0]

The result of this derivative involves £ ' evaluated with the argument x* 2.
D[f[x"2], x]

2 xf’[xz]

You can evaluate the result at the point x =2 by using the standard Mathematica replacement
operation.

% /. x->2

4 £'[4]
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There is some slight subtlety when you need to deduce the value of £' based on definitions for

objects like £[x_].

Here is a definition for a function h.
hix_] :=x"4

When you take the derivative of h[x], Mathematica first evaluates h [x], then differentiates
the result.
D[h[x], x]

4x3

You can get the same result by applying the function h ' to the argument x.
h'[x]

4x3

Here is the function h ' on its own.
h'

411° &

The function £' is completely determined by the form of the function £. Definitions for objects
like £[x_] do not immediately apply however to expressions like £'[x]. The problem is that
£ ' [x] has the full form Derivative [1][£][x], which nowhere contains anything that explicitly
matches the pattern £[x_]. In addition, for many purposes it is convenient to have a representa-

tion of the function £ ' itself, without necessarily applying it to any arguments.

What Mathematica does is to try and find the explicit form of a pure function which represents
the object £'. When Mathematica gets an expression like Derivative[1][f], it effectively
converts it to the explicit form p[f[#], #] & and then tries to evaluate the derivative. In the
explicit form, Mathematica can immediately use values that have been defined for objects like

f[x_]. If Mathematica succeeds in doing the derivative, it returns the explicit pure-function

result. If it does not succeed, it leaves the derivative in the original £' form.

This gives the derivative of Tan in pure-function form.

Tan'

Sec[r1]? &
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Here is the result of applying the pure function to the specific argument y.
%[y]

Sec[y]2

Defining Derivatives

You can define the derivative in Mathematica of a function £ of one argument simply by an

assignment like £' [x ] = fp[x].

This defines the derivative of f(x) to be fp(x). In this case, you could have used = instead of :-=.

£'[x_] := £p[x]

The rule for £' [x_] is used to evaluate this derivative.
D[f[x"2], x]

2xfp[x2}

Differentiating again gives derivatives of fp.
D[%, x]

2 fp[xz] + 4 x? fp’[xz}

This defines a value for the derivative of g at the origin.
g'[0] =g0
g0

The value for g ' [0] is used.
D[g[x] "2, x] /.x->0

2g90g[0]

This defines the second derivative of g, with any argument.
g''[x_] = gpp[x]

gpp [X]
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The value defined for the second derivative is used.
D[g[x] "2, {x, 2}]

2g[x] gpp[x] +2 g’ [x]°

To define derivatives of functions with several arguments, you have to use the general represen-

tation of derivatives in Mathematica.

f'lx_1z:=rhs define the first derivative of f
Derivative [n] [f] [x_]:=rhs define the nt" derivative of f
Derivative [m,n,...]1 [g][x_,_,...] s=rhs

define derivatives of g with respect to various arguments

Defining derivatives.

This defines the second derivative of g with respect to its second argument.

Derivative[O0, 2][g][x_, v_] := g2p[x, y]

This uses the definition just given.
D[g[a”2, x"2], x, x]

4 x? gZp[az, xz} +2g0b [az, xz}

Integration

Here is the integral fx" d x in Mathematica.

Integrate[x"n, x]

Here is a slightly more complicated example.
Integrate[l/ (x"4-a"4), x]
ArCTa“[z] Logla - x] Log[a + x]

- +
2 a’ 4 a3 4a®
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Mathematica knows how to do almost any integral that can be done in terms of standard mathe-
matical functions. But you should realize that even though an integrand may contain only fairly
simple functions, its integral may involve much more complicated functions—or may not be

expressible at all in terms of standard mathematical functions.

Here is a fairly straightforward integral.
Integrate[Log[l - x" 2], x]

-2x-Log[-1+x] +Log[l + x] +xLog[l—x2]

This integral can be done only in terms of a dilogarithm function.
Integrate[Log[l - x"2] / x, x]

1
- — PolyLog [2 , xz}
2

This integral involves Erf.
Integrate[Exp[l - x"2], x]

1
76\/7Erf[x]
2

And this one involves a Fresnel function.

Integrate[Sin[x " 2], x]

s 2
— Fresnels[ — x}
2 7T

Even this integral requires a hypergeometric function.
Integrate[(1-x"2) "“n, x]
1 3

X Hypergeometric2Fl|—, -n, —, X
2 2

2

This integral simply cannot be done in terms of standard mathematical functions. As a result,
Mathematica just leaves it undone.

Integrate[x"x, x]

Jxx dx
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Integrate[f,x] the indefinite integral [f d x
Integrate[f,x,y] the multiple integral [dxdy f
Integrate [f, {X, Xmins Xmar} ] the definite integral Ef dx

Integrate [fl {xrxminlxmwc} 14 {ylymin Iymax} ]

the multiple integral f:’”“‘dxjyym‘"‘dyf

min min

Integration.

Here is the definite integral f;’sin2 (x)dx.

Integrate[Sin[x] *2, {x, a, b}]

(-a+b+Cos[a] Sin[a] - Cos[b] Sin[b])

N | e

Here is another definite integral.
Integrate[Exp[-x"2], {x, O, Infinity}]

Vo

2

Mathematica cannot give you a formula for this definite integral.

Integrate[x"x, {x, 0, 1}]
1

Jxxdlx

0

You can still get a numerical result, though.
N[%]
0.783431

This evaluates the multiple integral ﬂdxﬁaly(x2 +)?). The range of the outermost integration
variable appears first.

Integrate[x"2+y"2, {x, 0, 1}, {y, 0, x}]

1

3
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This integrates x'° over a circular region.
Integrate[x "~ 10 Boole[x"2+y"2<=1], {x, -1, 1}, {y, -1, 1}]
217

512

Indefinite Integrals

The Mathematica function Integrate[f, x] gives you the indefinite integral ffdx. You can

think of the operation of indefinite integration as being an inverse of differentiation. If you take
the result from Integrate[f, x], and then differentiate it, you always get a result that is mathe-
matically equal to the original expression f.

In general, however, there is a whole family of results which have the property that their deriva-
tive is f. Integrate[f, x] gives you an expression whose derivative is f. You can get other
expressions by adding an arbitrary constant of integration, or indeed by adding any function
that is constant except at discrete points.

If you fill in explicit limits for your integral, any such constants of integration must cancel out.
But even though the indefinite integral can have arbitrary constants added, it is still often very
convenient to manipulate it without filling in the limits.

Mathematica applies standard rules to find indefinite integrals.
Integrate[x "2, x]

%3

3

You can add an arbitrary constant to the indefinite integral, and still get the same derivative.
Integrate simply gives you an expression with the required derivative.

D[%+c, x]

X2

This gives the indefinite integral fj—xl
X =

Integrate[l/ (x"2-1), x]

1 1
— Log[-1+x] - —Log[l + x]
2 2
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Differentiating should give the original function back again.
D[%, x]

1 1

2 (-1+x) 2 (l+x)

You need to manipulate it to get it back into the original form.
Simplify[%]

1

-1+ x2

The Integrate function assumes that any object that does not explicitly contain the integration
variable is independent of it, and can be treated as a constant. As a result, Integrate is like an

inverse of the partial differentiation function D.

The variable a is assumed to be independent of x.
Integrate[ax"2, x]

a x?

3

The integration variable can be any expression that does not involve explicit mathematical
operations.

Integrate[xb[x] "2, b[x]]

1

—xb[x]?
3

Another assumption that Integrate implicitly makes is that all the symbolic quantities in your

Pl

integrand have "generic" values. Thus, for example, Mathematica will tell you that fx"dx is —

even though this is not true in the special case n=-1.

Mathematica gives the standard result for this integral, implicitly assuming that n is not equal to
-1.
Integrate[x"n, x]

x1+n

l+n

If you specifically give an exponent of - 1, Mathematica produces a different result.
Integrate[x" -1, x]

Log[x]
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You should realize that the result for any particular integral can often be written in many differ-
ent forms. Mathematica tries to give you the most convenient form, following principles such as

avoiding explicit complex numbers unless your input already contains them.

This integral is given in terms of ArcTan.
Integrate[l/ (1+ax"2), x]

ArcTan [\/: x}
Va

This integral is given in terms of ArcTanh.
Integrate[l/ (1-bx"2), x]

ArcTanh [\/; x}
Vb

This is mathematically equal to the first integral, but is given in a somewhat different form.
%/.b->-a

ArcTanh [\/: X}
Ve

The derivative is still correct.
D[%, x]

1

1+ax?

Even though they look quite different, both ArcTan [x] and -ArcTan[1 / x] are indefinite
integrals of 1/(1 +x?).
Simplify[D[{ArcTan[x], -ArcTan[1l/ x]}, x]]

1 1

{ .

1+x% 1+x?

Integrate chooses to use the simpler of the two forms.
Integrate[l/ (1 +x"2), x]

ArcTan[x]
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Integrals That Can and Cannot Be Done

Evaluating integrals is much more difficult than evaluating derivatives. For derivatives, there is
a systematic procedure based on the chain rule that effectively allows any derivative to be

worked out. But for integrals, there is no such systematic procedure.

One of the main problems is that it is difficult to know what kinds of functions will be needed to
evaluate a particular integral. When you work out a derivative, you always end up with func-
tions that are of the same kind or simpler than the ones you started with. But when you work

out integrals, you often end up needing to use functions that are much more complicated than
the ones you started with.

This integral can be evaluated using the same kind of functions that appeared in the input.
Integrate[Log[x] ~ 2, x]

2x-2xLog[x] + xLog[x]?

But for this integral the special function LogIntegral is needed.
Integrate[Log[Log[x]], x]

xLog[Log[x]] - LogIntegral [x]

It is not difficult to find integrals that require all sorts of functions.
Integrate[Sin[x " 2], x]

7 2
— Fresnels[ — x}
2 T

This integral involves an incomplete gamma function. Note that the power is carefully set up to
allow any complex value of x.

Integrate[Exp[-x~a], x]

1/ 1
x (x2) 1r’aGamma{—, xa}
a

a

Mathematica includes a very wide range of mathematical functions, and by using these func-
tions a great many integrals can be done. But it is still possible to find even fairly simple-look-

ing integrals that just cannot be done in terms of any standard mathematical functions.
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Here is a fairly simple-looking integral that cannot be done in terms of any standard mathemati-
cal functions.

Integrate[Sin[x] / Log[x], x]
Sin[x]

J dx
Log[x]

The main point of being able to do an integral in terms of standard mathematical functions is

that it lets one use the known properties of these functions to evaluate or manipulate the result

one gets.

In the most convenient cases, integrals can be done purely in terms of elementary functions
such as exponentials, logarithms and trigonometric functions. In fact, if you give an integrand
that involves only such elementary functions, then one of the important capabilities of
Integrate is that if the corresponding integral can be expressed in terms of elementary func-
tions, then Integrate will essentially always succeed in finding it.

Integrals of rational functions are straightforward to evaluate, and always come out in terms of
rational functions, logarithms and inverse trigonometric functions.

Integrate[x/ ((x-1) (x+2)), x]
1 2

— Log[-1+x] + —Log[2 + X]
3 3

The integral here is still of the same form, but now involves an implicit sum over the roots of a
polynomial.

Integrate[l/ (1+2x+x"3), x]
Log[x - #1]

RootSum l+2ttl+1113&, _—— &
243112

This finds numerical approximations to all the root objects.
N[%]

(-0.19108 - 0.088541 i) Log[ (-0.226699 - 1.46771 i) + x] -
(0.19108 - 0.088541 1) Log [ (-0.226699 + 1.46771 1) + x] + 0.38216 Log[0.453398 + x]

Integrals of trigonometric functions usually come out in terms of other trigonometric functions.
Integrate[Sin[x] “3 Cos[x] "~ 2, x]
Cos [x] 1 1

- — Cos[3x] + — Cos[5x]
8 48 80
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This is a fairly simple integral involving algebraic functions.
Integrate[Sqrt[x] Sqrt[1l + x], x]

[\/?x/ux (1+2x) —Arcsinh[\/;”

1
4

Here is an integral involving nested square roots.
Integrate[Sqrt[x + Sqrt[x]], x]

i \/;er (—3+2\/?+8x)+§Log{l+2\/?+2\/\/;+x}

12

By nesting elementary functions you sometimes get integrals that can be done in terms of
elementary functions.

Integrate[Cos[Log[x]], x]
1 1

— xCos[Log[x]] + —xSin[Log[x]]
2 2

But more often other kinds of functions are needed.

Integrate[Log[Cos[x]], x]

L2

1x . 1

—XLog[l +ez“x} +xLog[Cos[x]] + — JiPolyLog[Z, -e
2

21ix
, ]

Integrals like this typically come out in terms of elliptic functions.
Integrate[Sqrt[Cos[x]], x]

X
2 EllipticE[f, 2}
2

But occasionally one can get results in terms of elementary functions alone.
Integrate[Sqrt[Tan[x]], x]

! [—2 ArcTan{l —\/?w/Tan[x] } + 2ArcTan{l +\/?w/Tan[x} ] +

22

Log[—1+\/?x/Tan[x] —Tan[x]} —Log{l+ﬁxlTan[x] +Tan[x]”

Integrals like this can systematically be done using Piecewise.
Integrate[2"Max[x, 1-x], x]

gix
" Log(2)

22 2
+

_LogLZJ Log (2]

1
X= -
2

True
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Beyond working with elementary functions, Integrate includes a large number of algorithms
for dealing with special functions. Sometimes it uses a direct generalization of the procedure for
elementary functions. But more often its strategy is first to try to write the integrand in a form
that can be integrated in terms of certain sophisticated special functions, and then having done
this to try to find reductions of these sophisticated functions to more familiar functions.

To integrate this Bessel function requires a generalized hypergeometric function.
Integrate[BesselJd[0, x], x]
1 3 x?

xHypergeometricPFQH;}, {l, ;}, fj]

Sometimes the integrals can be reduced to more familiar forms.
Integrate[x "~ 3 BesselJ[0, x], x]

-x? (-2 BesselJ[2, x] + xBesselJ[3, x])

A large book of integral tables will list perhaps a few thousand indefinite integrals. Mathematica
can do essentially all of these integrals. And because it contains general algorithms rather than

just specific cases, Mathematica can actually do a vastly wider range of integrals.

You could expect to find this integral in any large book of integral tables.
Integrate[Log[l - x] / x, x]

-PolyLog[2, x]

To do this integral, however, requires a more general algorithm, rather than just a direct table
lookup.
Integrate[Log[l+3 x+x"2] /x, x]

Log[x] Log[i[3—\/5_)+x]fL0g{l+ 2x } + Log [x] Log[i(3+\/?]+x}—Log[l+ 2x +
2 3-45 2 3+5
Log[x] —Log{i[3—\/?]+x]—Log{i[3+\/?)+X}+Log[l+3x+x2} -
22x ? 2x
PolyLog[Z, - ] - PolyLog{Z, - }
3-Vs5 3+45

Particularly if you introduce new mathematical functions of your own, you may want to teach
Mathematica new kinds of integrals. You can do this by making appropriate definitions for

Integrate.



234 | Mathematics and Algorithms

In the case of differentiation, the chain rule allows one to reduce all derivatives to a standard
form, represented in Mathematica using Derivative. But for integration, no such similar stan-
dard form exists, and as a result you often have to make definitions for several different ver-
sions of the same integral. Changes of variables and other transformations can rarely be done
automatically by Integrate.

This integral cannot be done in terms of any of the standard mathematical functions built into
Mathematica.

Integrate[Sin[Sin[x]], x]

Jéin[sin[x]]dx

Before you add your own rules for integration, you have to remove write protection.
Unprotect [Integrate]

{Integrate}

You can set up your own rule to define the integral to be, say, a "Jones" function.

Integrate[Sin[Sin[a_.+b_.x_]], x_] := Jones[a, x] /b

Now Mathematica can do integrals that give Jones functions.
Integrate[Sin[Sin[3 x]], x]
1

— Jones [0, x]
3

As it turns out, the integral fsin(sin(x)) dx can in principle be represented as an infinite sum of , F;

hypergeometric functions, or as a suitably generalized Kampé de Fériet hypergeometric function

of two variables.

Definite Integrals

Integrate[f,x] the indefinite integral [f dx
Integrate [f, {X; Xuin s Xmax} ] the definite integral [ f dx

Integrate [f, {X, Xmin s Xmax} r {Y 1 Ymin 1 Ymax } ]

the multiple integral xx’f”*dem”"dyf

min

Integration functions.
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Here is the integral j;xzdx.

Integrate[x"2, {x, a, b}]

This gives the multiple integral jovdxﬁdy(x2 +y?).
Integrate[x*“2+y~2, {x, 0, a}, {y, 0, b}]
1

—ab (a® + b%)
3

The y integral is done first. Its limits can depend on the value of x. This ordering is the same as
is used in functions like Sum and Table.
Integrate[x"2+y"~2, {x, 0, a}, {y, O, x}]

at

3

In simple cases, definite integrals can be done by finding indefinite forms and then computing
appropriate limits. But there is a vast range of integrals for which the indefinite form cannot be

expressed in terms of standard mathematical functions, but the definite form still can be.

This indefinite integral cannot be done in terms of standard mathematical functions.

Integrate[Cos[Sin[x]], x]

JCOS [Sin[x]] dx

This definite integral, however, can be done in terms of a Bessel function.
Integrate[Cos[Sin[x]], {x, 0, 2Pi}]

2 7t BesselJ [0, 1]

Here is an integral where the indefinite form can be found, but it is much more efficient to work
out the definite form directly.
Integrate[Log[x] Exp[-x"2], {x, 0, Infinity}]

1
-— V7 (EulerGamma + Log[4])
4
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Just because an integrand may contain special functions, it does not mean that the definite
integral will necessarily be complicated.

Integrate[BesselK[0, x] “2, {x, 0, Infinity}]

2

4

Special functions nevertheless occur in this result.
Integrate[BesselK[0, x] BesselJd[0, x], {x, O, Infinity}]

172
Gamma[;]

427

The integrand here is simple, but the definite integral is not.

Integrate[Sin[x " 2] Exp[-x], {x, 0, Infinity}]
3 5 1 1 1

cos[ ] +sinl ||
4 4

i -2 HypergeometricPFQ{{l}, {7, 7}, _7} a2
4 4 4 64

Even when you can find the indefinite form of an integral, you will often not get the correct
answer for the definite integral if you just subtract the values of the limits at each end point.
The problem is that within the domain of integration there may be singularities whose effects

are ignored if you follow this procedure.

Here is the indefinite integral of l/xz.
Integrate[l/x"2, x]
1

X

This subtracts the limits at each end point.
Limit[%, x -> 2] -Limit[%, x -> -2]

-1

The true definite integral is divergent because of the double pole at x =0.

Integrate[l/x"2, {x, -2, 2}]

>

2 1
—dx
-2 42
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Here is a more subtle example, involving branch cuts rather than poles.

Integrate[l/ (1 +aSin[x]), x]

}

x
a+Tan [ —]

2 ArcTan [

1-a?

1-a

Taking limits in the indefinite integral gives 0.
Limit[%, x -> 2Pi] -Limit[%, x -> O]
0

The definite integral, however, gives the correct result which depends on a. The assumption
assures convergence.

Integrate[l/ (1 +aSin[x]), {x, O, 2Pi}, Assumptions -> -1 <a< 1]
27

1-a?

Integrate [f, {x,xm,-,, ,xmwf} , PrincipalValue—>True}
the Cauchy principal value of a definite integral

Principal value integrals.

Here is the indefinite integral of 1/x.
Integrate[l / x, x]

Log[x]

Substituting in the limits —1 and +2 yields a strange result involving i x.
Limit[%, x -> 2] -Limit[%, x -> -1]

-1+ Log[2]

The ordinary Riemann definite integral is divergent.
Integrate[l/x, {x, -1, 2}]

Integrate::idiv: Integral of — does not converge on {-1, 2}. >
X
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The Cauchy principal value, however, is finite.
Integrate[l/x, {x, -1, 2}, PrincipalValue -> True]

Log[2]

When parameters appear in an indefinite integral, it is essentially always possible to get results
that are correct for almost all values of these parameters. But for definite integrals this is no
longer the case. The most common problem is that a definite integral may converge only when
the parameters that appear in it satisfy certain specific conditions.

This indefinite integral is correct for all n+ —1.

Integrate[x"n, x]

For the definite integral, however, n must satisfy a condition in order for the integral to be
convergent.
Integrate[x”n, {x, 0, 1}]

1

If | Re[n] > -1, ’ Integrate[x“, {x, 0, 1}, Assumptions - Re[n] =< —IH

l+n

If n is replaced by 2, the condition is satisfied.

%/.n->2

1

3
option name default value
GenerateConditions Automatic whether to generate explicit conditions
Assumptions $Assumptions what relations about parameters to assume

Options for Integrate.

With the assumption n > 2, the result is always 1/(1 + n).
Integrate[x”n, {x, O, 1}, Assumptions -> (n > 2)]

1

l+n
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Even when a definite integral is convergent, the presence of singularities on the integration
path can lead to discontinuous changes when the parameters vary. Sometimes a single formula
containing functions like sign can be used to summarize the result. In other cases, however,

an explicit 1£ is more convenient.

The If here gives the condition for the integral to be convergent.
Integrate[Sin[ax] / x, {x, 0, Infinity}]
1 Sin[ax]

If|acReals, —nrSign[a], Integrate
2 X

, {x, 0, =}, Assumptionsaa;tRe[a]H

Here is the result assuming that a is real.

Integrate[Sin[ax] / x, {x, 0, Infinity}, Assumptions -> Im[a] == 0]

1
— st Sign[a]
2

The result is discontinuous as a function of a. The discontinuity can be traced to the essential
singularity of sin(x) at x = co.
Plot[%, {a, -5, 5}]

There is no convenient way to represent this answer in terms of Sign, so Mathematica gener-

ates an explicit If.
Integrate[Sin[x] BesselJ[0, ax] / x, {x, 0, Infinity}, Assumptions -> Im[a] == 0]

N 1
aArcSln{ﬂ 7

1fla<-1|]a>1, — ", 7}
Abs[a] 2

Here is a plot of the resulting function of a.

Plot [Evaluate[%], {a, -5, 5}]

T

i 101 \

/ 05 \
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Integrals over Regions

This does an integral over the interior of the unit circle.
Integrate[If[x"2+y~2<1,1, 0], {x, -1, 1}, {y, -1, 1}]

T

Here is an equivalent form.
Integrate[Boole[x"2+y~2< 1], {x, -1, 1}, {y, -1, 1}]

s

Even though an integral may be straightforward over a simple rectangular region, it can be

significantly more complicated even over a circular region.

This gives a Bessel function.
Integrate[Exp[x] Boole[x"2+y~2< 1], {x, -1, 1}, {y, -1, 1}]

2 mBesselI[1l, 1]

Integrate [f Boole [Cond] 4 {xlxminl-xmax} ’ {ylyminrymax} J

integrate f over the region where cond is True

Integrals over regions.

Particularly if there are parameters inside the conditions that define regions, the results for

integrals over regions may break into several cases.

This gives a piecewise function of a.
Integrate[Boole[ax <y], {x, O, 1}, {y, O, 1}]

<0

I
o o

<a=s1l

[~ ~]

True

N}
o

With two parameters even this breaks into quite a few cases.
Integrate[Boole[ax < b], {x, 0, 1}]

1 (a>0&sa-b<0) || (a<0&&b>0)
2P 4<0ssa-b<0&b=<0

a

i a>0&&b>0&&a-b>0
a



Mathematics and Algorithms | 241

This involves intersecting a circle with a square.
Integrate[Boole[x"2+y~2 < a], {x, 0, 1}, {y, 0, 1}]
1

arn

0O<ac=1
4

ax=2

1

7 (2\/—1+a +aArcCot[\/—l+a } —aArcTan[\/—l+a ” l<a<2

The region can have an infinite number of components.
Integrate[Boole[Sin[x] > 1/ 2] Exp[-x], {x, O, Infinity}]
77/6

e

, )
14 e27/3 4 etn/3

Manipulating Integrals in Symbolic Form

When Mathematica cannot give you an explicit result for an integral, it leaves the integral in a
symbolic form. It is often useful to manipulate this symbolic form.

Mathematica cannot give an explicit result for this integral, so it leaves the integral in symbolic
form.

Integrate[x "2 f[x], x]

sz fx] dx

Differentiating the symbolic form gives the integrand back again.
D[%, x]

x? f[x]

Here is a definite integral which cannot be done explicitly.
Integrate[f[x], {x, a[x], b[x]}]

This gives the derivative of the definite integral.
D[%, x]

-fla[x]] a’[x] + £[b[x]] b’ [x]
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Here is a definite integral with end points that do not explicitly depend on x.
defint = Integrate[f[x], {x, a, b}]

b
Jf[x] dx

The partial derivative of this with respect to u is zero.
D[defint, u]
0

There is a non-trivial total derivative, however.
Dt [defint, u]

-Dt[a, u] £[a] + Dt[b, u] £[b]

Differential Equations

You can use the Mathematica function DsSolve to find symbolic solutions to ordinary and partial

differential equations.

Solving a differential equation consists essentially in finding the form of an unknown function.
In Mathematica, unknown functions are represented by expressions like y[x]. The derivatives
of such functions are represented by y ' [x], y''[x] and so on.

The Mathematica function DSolve returns as its result a list of rules for functions. There is a
question of how these functions are represented. If you ask DSolve to solve for y[x], then
DSolve will indeed return a rule for y[x]. In some cases, this rule may be all you need. But this
rule, on its own, does not give values for y' [x] or even y[0]. In many cases, therefore, it is
better to ask Dsolve to solve not for y[x], but instead for y itself. In this case, what DSolve

will return is a rule which gives y as a pure function, in the sense discussed in "Pure Functions".

If you ask DSolve to solve for y [x], it will give a rule specifically for y [x].
DSolvel[y'[x] +y[x] == 1, y[x], x]

{ylx]»1+e™c[1]}}

The rule applies only to y [x] itself, and not, for example, to objects like y[0] ory ' [X].
y[x]+2y'[x] +y[0] /. %

(Lee*c[1] +y[0] +2y [x]}



Mathematics and Algorithms | 243

If you ask DSolve to solve for y, it gives a rule for the object y on its own as a pure function.
DSolve[y'[x] +y[x] == 1, ¥, x]

{{y > Function|[{x}, 1+e™C[1]]}}

Now the rule applies to all occurrences of y.
yIx]l+2y'[x] +y[0] /. %

{2+c[1] -e™C[1]}

Substituting the solution into the original equation yields True.
y'[x] +y[x] ==1/. %%

{True}
DSolve[egn,y[x] ,x] solve a differential equation for y[x]
DSolve [eqn,y,x] solve a differential equation for the function y

Getting solutions to differential equations in different forms.

In standard mathematical notation, one typically represents solutions to differential equations
by explicitly introducing "dummy variables" to represent the arguments of the functions that
appear. If all you need is a symbolic form for the solution, then introducing such dummy vari-
ables may be convenient. However, if you actually intend to use the solution in a variety of
other computations, then you will usually find it better to get the solution in pure-function form,
without dummy variables. Notice that this form, while easy to represent in Mathematica, has no
direct analog in standard mathematical notation.

DSolve [{eqn ,eqny, ...} 1 {Yy11Y27---} 1 X]

solve a list of differential equations

Solving simultaneous differential equations.

This solves two simultaneous differential equations.

DSolve[{y[x] == -z '[x], z[x] == -y ' [x]}, {y, 2}, %]
1 1

{{zaFunction[(x}, —e* (1+e’*)Cl1] - —e* (—1+e2x> C[Z]},
21 2 1

yeFunction{{x}, e (-1+e?¥)Cll] + —e ™ (1+e¥) C[Z]H}
2 2
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Mathematica returns two distinct solutions for y in this case.

DSolve[y[x] v '[x] ==1, y, x]

{{yaFunction[{x}, —\/7\/X+C[1] H, {yaFunction{{x}, \/?x/x+c[l] ]}}

You can add constraints and boundary conditions for differential equations by explicitly giving

additional equations such as y[0] ==

This asks for a solution which satisfies the condition y[0] == 1.
DSolve[{y'[x] == ay[x], Y[0] == 1}, y[x], x]
{{y(x]»e**}}

If you ask Mathematica to solve a set of differential equations and you do not give any con-
straints or boundary conditions, then Mathematica will try to find a general solution to your
equations. This general solution will involve various undetermined constants. One new constant

is introduced for each order of derivative in each equation you give.

The default is that these constants are named c[n], where the index n starts at 1 for each
invocation of DSolve. You can override this choice, by explicitly giving a setting for the option
GeneratedParameters. Any function you give is applied to each successive index value n to get

the constants to use for each invocation of DSolve.

The general solution to this fourth-order equation involves four undetermined constants.
DSolvely''''[x] == yI[x], v[x], x]

{{v[x] »e*c[1] +e™C[3] +C[2] Cos[x] +C[4] Sin[x]}}

Each independent initial or boundary condition you give reduces the number of undetermined
constants by one.

DSolve[{y''''[x] ==y[x], y[0] ==y '[0] == 0}, y[x], x]

{{v[x] >e™ (c[3] +e**C[3] - e**C[4] - 2e*C[3] Cos[x] + e* C[4] Cos[x] + e*C[4] Sin[x])}}

You should realize that finding exact formulas for the solutions to differential equations is a
difficult matter. In fact, there are only fairly few kinds of equations for which such formulas can

be found, at least in terms of standard mathematical functions.

The most widely investigated differential equations are linear ones, in which the functions you

are solving for, as well as their derivatives, appear only linearly.
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This is a homogeneous first-order linear differential equation, and its solution is quite simple.

DSolvely'[x] -xy[x] == 0, y[x], x]

{{rmx »eécm}}

Making the equation inhomogeneous leads to a significantly more complicated solution.

DSolve[y ' [x] -xy[x] == 1, y[x], x]

= [ X
HY[X] »ez C[l] +e> \/jErf{ﬁ”}

If you have only a single linear differential equation, and it involves only a first derivative of the
function you are solving for, then it turns out that the solution can always be found just by

doing integrals.

But as soon as you have more than one differential equation, or more than a first-order deriva-
tive, this is no longer true. However, some simple second-order linear differential equations can
nevertheless be solved using various special functions from "Special Functions". Indeed, histori-
cally many of these special functions were first introduced specifically in order to represent the

solutions to such equations.

This is Airy’s equation, which is solved in terms of Airy functions.
DSolve[y''[x] -xy[x] == 0, y[x], x]

{{y[x] > AiryAi[x] C[1] + AiryBi[x] C[2]}}

This equation comes out in terms of Bessel functions.

DSolve[y''[x] - Exp[x] y[x] == 0, y[x], x]

Hy[x] eBesselI[O, 2\/e_x} cr1] +23esse1K[o, zx/e_x} C[Z]}}

This requires Mathieu functions.
DSolve[y''[x] +Cos[x] y[x] == 0, y, x]
X X

{{yeFunction[{x}, Cl1] Mathieuc{o, _2, ;} +C[2] Mathieus|o0, -2, ;H}}
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And this Legendre functions.
DSolve[y''[x] -Cot[x] "2y[x] ==0, y[x], x]

1/ 1 Vs
{{y[x] - C[1] (—1+Cos[x]2) ! LegendreP{f, _— Cos[x]] +
2 2
cl2] (-1+cos(x]?)"* Legendreg{i Vs cos[x]]}}
2 ' 2 '

Occasionally second-order linear equations can be solved using only elementary functions.

DSolve[x"2y''[x] +y[x] ==0, y[x], x]

Hy[x] S c[1] COS{E\ELOQ[X]} +/x c[2] sin{g\/?Log[x]H}

Beyond second order, the kinds of functions needed to solve even fairly simple linear differen-
tial equations become extremely complicated. At third order, the generalized Meijer G function
MeijerG can sometimes be used, but at fourth order and beyond absolutely no standard mathe-

matical functions are typically adequate, except in very special cases.

Here is a third-order linear differential equation which can be solved in terms of generalized
hypergeometric functions.

DSolve[y'''[x] +xy[x] == 0, y[x], x]

{{vx1 -

. y . 3 s x4
cl1] HypergeometricPFQ{{}, {7, f}, ——} + XC[2] HYPergeometricPFQ{{}, {7, *}r ‘*} +
2 4 64" 242 P ™
4
éxzcm HypergeometricPFQ| (), {; z} 7:74”}

This requires more general Meijer G functions.

DSolve[y'''[x] +Exp[x] y[x] == 0, y[x], x]

{{vix] »c[1] HypergeometricPFQ[{}, {1, 1}, -e*] +
cl2] MeijerG[{{}, {}}, {{0, 0}, {0}}, —€*] +C[3] MeijerG[{{}, {}}, ({0, 0, 0}, {}}, €*]}}

For nonlinear differential equations, only rather special cases can usually ever be solved in
terms of standard mathematical functions. Nevertheless, Dsolve includes fairly general proce-

dures which allow it to handle almost all nonlinear differential equations whose solutions are

found in standard reference books.
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First-order nonlinear differential equations in which x does not appear on its own are fairly easy
to solve.

DSolve[y ' [x] - y[x] "2 == 0, y[x], x]

{frix - —)

1

—x-C[1]

This Riccati equation already gives a significantly more complicated solution.
DSolve[y'[x] -y[x] "2 ==x, y[x], x] // FullSimplify

2 2x3/? 2 2x3/?
{{y[x] - |Vx —BesselJ{—f, } +BesselJ{f, Cl1] /
3 3 3 3
1 2x3/? 1 2x3?
BesselJ[f, +BesselJ{—f, C[1] }}

3 3 3 3

This Bernoulli equation, however, has a fairly simple solution.
DSolve[y'[x] -xy[x]"2-y[x] ==0, y[x], x]

{{roa-- )

e

—e*+e*x-C[1]

An n'" order Bernoulli equation typically has n — 1 distinct solutions.

DSolve[y'[x] - xy[x] "3 +y[x] == 0, y[x], x]
V2o V2o
{{vrx1-- b vz - 4
\/1+2x+2€2xc[1] \/1+2x+2e“cm

This Abel equation can be solved, but only implicitly.

DSolve[y' [x] +xy[x] "3 +y[x]"2==0, y[x], ]
2ArcTanh{71’2xy{x]]
Js

-1-xy[x] (-1-xy[x])
501ve[7 +L09[ ]

2 Vs xy[x]?

In practical applications, it is quite often convenient to set up differential equations that involve

piecewise functions. You can use DSolve to find symbolic solutions to such equations.
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This equation involves a piecewise forcing function.

DSolve[y ' [x] - y[x] == UnitStep[x], y[x], x]

{froa semennee ([T 20001

Here the solution is explicitly broken into three cases.
DSolve[y ' [x] +Clip[x] y[x] == 0, y[x], x]

X x=<-1
1o

-—-— -l<x=1
2 2

-X True C[l]}}

{{y[x] - e

Beyond ordinary differential equations, one can consider differential-algebraic equations that

involve a mixture of differential and algebraic equations.

This solves a differential-algebraic equation.
DSolve[{y'[x] +3z'[x] ==4y[x]+1/x, y[x] +z[x] == 1}, {y[x], z[x]}, x]

3 1

{{y[x] > —+— (-e?*C[1] -9e?* (3e”* + ExpIntegralEi[2x])),
2 18
1 1

Z[X] 5 -— + — (e’zxc[l] +9 e 2% (3 e?* + ExpIntegralEi[2 X]))H
2 18

DSolve[eqn,y[Xy,X2,.-.] v {X1,X2,...}]
solve a partial differential equation for y[x;, x2, ...]

DSolve[eqn,y, {x1,X2,...}] solve a partial differential equation for the function y

Solving partial differential equations.

Dsolve is set up to handle not only ordinary differential equations in which just a single indepen-
dent variable appears, but also partial differential equations in which two or more independent

variables appear.

This finds the general solution to a simple partial differential equation with two independent
variables.

DSolve[D[y[x1, x2], x1] +D[y[x1l, x2], x2] == 1/ (x1x2), y[x1, x2], {x1, x2}]

1

{{y[xl, x2] - (-Log[x1] + Log[x2] + x1C[1] [-x1 +x2] - x2 C[1] [-x1 +x2])}}

x1 - x2
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Here is the result represented as a pure function.
DSolve[D[y[x1l, x2], x1] +D[y[x1, x2], x2] == 1/ (x1x2), y, {x1, x2}]

1

{{yaFunction[(xl, x2}, (-Log[x1] + Log[x2] +x1C[1] [-x1 + x2] - x2C[1] [—xl+x2])]}}

x1 - x2

The basic mathematics of partial differential equations is considerably more complicated than
that of ordinary differential equations. One feature is that whereas the general solution to an
ordinary differential equation involves only arbitrary constants, the general solution to a partial
differential equation, if it can be found at all, must involve arbitrary functions. Indeed, with m

independent variables, arbitrary functions of m — 1 arguments appear. bDSolve by default names
these functions c [n].

Here is a simple PDE involving three independent variables.
(D[#, x1] +D[#, x2] +D[#, x3]) &[y[x1, x2, x3]] ==

y %Y x1, x2, x3] +y @1 [x1, x2, x3] +y 1% [x1, x2, x3] =0

The solution involves an arbitrary function of two variables.
DSolve[%, y[x1, x2, x3], {x1, x2, x3}]

{{y[xl, x2, x3] >C[1] [-x1 +x2, -xX1 +x3]}}

Here is the one-dimensional wave equation.
(¢”2D[#, x, x] -D[#, t, t]) &[y[x, t]] ==

7y(0,2) [x, t] + czy(Z,O) [x, t] =0

The solution to this second-order equation involves two arbitrary functions.
Dsolve[%, y[x, t], {x, t}]

Jer x
J+C[2][t+
2

C C

J%"m

Hy[x, t] > C[1] {t -

For an ordinary differential equation, it is guaranteed that a general solution must exist, with
the property that adding initial or boundary conditions simply corresponds to forcing specific
choices for arbitrary constants in the solution. But for partial differential equations this is no

longer true. Indeed, it is only for linear partial differential and a few other special types that
such general solutions exist.
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Other partial differential equations can be solved only when specific initial or boundary values
are given, and in the vast majority of cases no solutions can be found as exact formulas in

terms of standard mathematical functions.

Since y and its derivatives appear only linearly here, a general solution exists.
DSolve[x1D[y[x1l, x2], x1] +x2D[y[x1l, x2], x2] == Exp[x1l x2], y[x1l, x2], {x1, x2}]

ExpIntegralEi[x1x2] +2C[1] {E} }}
x1

1

Hy[xl, x2] - .

This weakly nonlinear PDE turns out to have a general solution.
DSolve[D[y[x1, x2], x1] +D[y[x1, x2], x2] == Exp[y[x1, x2]], y[x1l, x2], {x1, x2}]

{{y[x1l, x2] > -Log[-x1-C[1] [-x1+x2]]}}

Here is a nonlinear PDE which has no general solution.

DSolve[D[y[x1l, x2], x1] D[y[x1, x2], x2] == a, y[x1, x2], {x1, x2}]

axl

{{y[xl, x2] 5C[1] + +x2 C[Z]}}

cl2]

Integral Transforms and Related Operations

Laplace Transforms

LaplaceTransform [expr,t,s] the Laplace transform of expr
InverselLaplaceTransform[expr,s,t]

the inverse Laplace transform of expr

One-dimensional Laplace transforms.

The Laplace transform of a function f(s) is given by K"f(t) e*'dt. The inverse Laplace transform

of F(s) is given for suitable y by 217 ﬂt’:"F(s) e ds.
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Here is a simple Laplace transform.

LaplaceTransform[t~4 Sin[t], t, s]

24 (1-10s?+5s%)

(1+sz)5

Here is the inverse.

InverseLaplaceTransform([%, s, t]

t*sin[t]

Even simple transforms often involve special functions.
LaplaceTransform[l/ (1+t"2), t, s]

1
CosIntegral[s] Sin[s] + — Cos[s] (/1 -2 SinIntegral[s])
2

Here the result involves a Meijer G function.
LaplaceTransform[l/ (1+t"3), t, s]

wessers] (2], 1), ({0 3, 2 2, 0], 2]

2V3

InverseLaplaceTransform returns the original function.
InverselLaplaceTransform[%, s, t]

1

1+t3

The Laplace transform of this Bessel function just involves elementary functions.

LaplaceTransform[BesselJd[n, t], t, s]

s+ 1+s?

A1+ s?

Laplace transforms have the property that they turn integration and differentiation into essen-

-n

tially algebraic operations. They are therefore commonly used in studying systems governed by

differential equations.
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Integration becomes multiplication by 1/s when one does a Laplace transform.
LaplaceTransform[Integrate[f[u], {u, O, t}], t, s]

LaplaceTransform[f[t], t, s]

S

LaplaceTransform [expr, {t;,t2,...} , {S1,52,---} ]
the multidimensional Laplace transform of expr

InverselLaplaceTransform[expr, {s;,82,...}, {ti,t2,...}]

the multidimensional inverse Laplace transform of expr

Multidimensional Laplace transforms.

Fourier Transforms

FourierTransform [expr,t,w] the Fourier transform of expr
InverseFourierTransform[expr,w,?]

the inverse Fourier transform of expr

One-dimensional Fourier transforms.

Integral transforms can produce results that involve "generalized functions" such as
HeavisideTheta.
FourierTransform[l/ (1+t"4), t, w]

1 i
[7+7
4 4

(1

NS

HeavisideTheta[-w] + [l -iet \ﬁw HeavisideTheta [w]

e\/?w (7]‘1+®i\/7w

This finds the inverse.
InverseFourierTransform[%, w, t]

1

1+t

In Mathematica the Fourier transform of a function f(r) is by default defined to be

;f;f(t)ef“”dt. The inverse Fourier transform of F(w) is similarly defined as

Var

1

e

f;F(w) et .,
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In different scientific and technical fields different conventions are often used for defining
Fourier transforms. The option FourierParameters in Mathematica allows you to choose any of

these conventions you want.

common convention setting Fourier transform inverse Fourier transform

. 1 . 1 .
Mathematica default {0, 1} — [T f et dt Flw)e ' dw

‘ — L. = [
pure mathematics (1, -1} f;f(t) e it gt i f;F(w) A9 dw
classical physics (-1, 1} ﬁ [ f@we dr [C Fw) et dw
. 1 g 1 .

modern physics {0, 1} — [P f@) et dt L [PFwei“dw
systems engineering {1, -1} f;f(t) e vt % f;F(a)) 29l dw
signal processing {0, -2Pi} [ e ietds [CFRwem e dw
general case {a, b} v(bh/en' ] [CF@ e dw

f;f(t) eibot gy

Typical settings for FourierParameters with various conventions.

@ ﬂ)lﬂz

Here is a Fourier transform with the default choice of parameters.

FourierTransform[Exp[-t " 2], t, w]

2

eiT

V2

Here is the same Fourier transform with the choice of parameters typically used in signal

processing.

FourierTransform[Exp[-t~2], t, w, FourierParameters -> {0, -2 Pi}]

e\

FourierSinTransform [expr,t,w]

FourierCosTransform [expr,t,w]

Fourier sine transform

Fourier cosine transform
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InverseFourierSinTransform[expr,w,t]

inverse Fourier sine transform

InverseFourierCosTransform [expr,w,t]

inverse Fourier cosine transform

Fourier sine and cosine transforms.

In some applications of Fourier transforms, it is convenient to avoid ever introducing complex
exponentials. Fourier sine and cosine transforms correspond to integrating respectively with

sin(wt) and cos(w?) instead of exp(i wt), and using limits 0 and « rather than -« and c.

Here are the Fourier sine and cosine transforms of ™.

{FourierSinTransform[Exp[-t], t, w], FourierCosTransform[Exp[-t], t, w]}

Fe

1+w

FEEN

{ J

2 1+ w?

FourierTransform [expr, {t;,tp,...} , {w1,w2,...}]
the multidimensional Fourier transform of expr
InverseFourierTransform[expr, {w|,wy,...}, {ti,t2,-.-}]

the multidimensional inverse Fourier transform of expr

FourierSinTransform [expr, {t;,tr,...} , {Wi,w2,...} ],
FourierCosTransform [expr, {t; ,tp,...} , {W1,w2,...}]

the multidimensional sine and cosine Fourier transforms of
expr
InverseFourierSinTransform [expr, {wi,wy,...} , {ti,t2,..-}] ,
InverseFourierCosTransform [expr, {wy,wy,...} , {ti,t2,...}]

the multidimensional inverse Fourier sine and cosine
transforms of expr

Multidimensional Fourier transforms.

This evaluates a two-dimensional Fourier transform.
FourierTransform[ (uv) "2 Exp[-u”~2-v"~2], {u, v}, {a, b}]
1 a2

— (-2+a?) (-2+b%) e s W
e (2w

This inverts the transform.

InverseFourierTransform[%, {a, b}, {u, v}]
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Z Transforms

ZTransform [expr,n,z] Z transform of expr

InverseZTransform [expr,z,n] inverse Z transform of expr
Z transforms.
The Z transform of a function f(n) is given by Y2, f(n)z™". The inverse Z transform of F(z) is given
by the contour integral #ﬁF(z)z’H dz. Z transforms are effectively discrete analogs of Laplace

transforms. They are widely used for solving difference equations, especially in digital signal
processing and control theory. They can be thought of as producing generating functions, of the
kind commonly used in combinatorics and number theory.

This computes the Z transform of 27",
ZTransform[2”-n, n, z]

2z

-1+2z

Here is the inverse Z transform.
InverseZTransform[%, z, n]

2n

The generating function for 1/n! is an exponential function.
ZTransform[l /n!, n, z]

1

ez

Generalized Functions and Related Objects

In many practical situations it is convenient to consider limits in which a fixed amount of some-
thing is concentrated into an infinitesimal region. Ordinary mathematical functions of the kind
normally encountered in calculus cannot readily represent such limits. However, it is possible to
introduce generalized functions or distributions which can represent these limits in integrals and
other types of calculations.
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DiracDelta [x] Dirac delta function 6(x)
HeavisideTheta [x] Heaviside theta function 6(x), equal to 0 for x <0 and 1 for
x>0

Dirac delta and Heaviside theta functions.

Here is a function concentrated around x =0.
Plot[Sqrt[50 / Pi] Exp[-50x"2], {x, -2, 2}, PlotRange -> All]

4

-2 -1 1 2

As n gets larger, the functions become progressively more concentrated.

Plot[Evaluate[Sqrt[n/Pi] Exp[-nx"~2] /. n -> {1, 10, 100}],
{x, -2, 2}, PlotRange -> All]

5k

4

3

20
J_J&LL
92 41 1 2

For any n >0, their integrals are nevertheless always equal to 1.
Integrate[Sqrt[n/Pi] Exp[-nx"2], {x, -Infinity, Infinity}, Assumptions -> n > 0]
1

The limit of the functions for infinite n is effectively a Dirac delta function, whose integral is
again 1.

Integrate[DiracDelta[x], {x, -Infinity, Infinity}]

1

DiracDelta evaluates to O at all real points except x =0.
Table[DiracDelta[x], {x, -3, 3}]

{0, 0, 0, DiracbDelta[0], 0, 0, 0}

Inserting a delta function in an integral effectively causes the integrand to be sampled at dis-
crete points where the argument of the delta function vanishes.



Mathematics and Algorithms | 257

This samples the function £ with argument 2.
Integrate[DiracDelta[x - 2] £[x], {x, -4, 4}]
£2]

Here is a slightly more complicated example.
Integrate[DiracDelta[x"2-x-1], {x, 0, 2}]

1

Vs

This effectively counts the number of zeros of cos(x) in the region of integration.
Integrate[DiracDelta[Cos[x]], {x, -30, 30}]
20

The Heaviside function HeavisideTheta[x] is the indefinite integral of the delta function. It is
variously denoted H(x), 6(x), u(x), and U(x). As a generalized function, the Heaviside function is
defined only inside an integral. This distinguishes it from the unit step function Unitstep [x],

which is a piecewise function.

The indefinite integral of the delta function is the Heaviside theta function.
Integrate[DiracDelta[x], x]

HeavisideTheta[x]

The value of this integral depends on whether « lies in the interval (-2, 2).
Integrate[f[x] DiracDelta[x -a], {x, -2, 2}, Assumptions -> a € Reals]

f[a] HeavisideTheta[2 - a] HeavisideTheta[2 + a]
DiracDelta and HeavisideTheta often arise in doing integral transforms.

The Fourier transform of a constant function is a delta function.

FourierTransform[l, t, w]

2 1 DiracDelta[w]
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The Fourier transform of cos(#) involves the sum of two delta functions.

FourierTransform[Cos[t], t, w]

Tt Tt
— DiracDelta[-1 +w] + — DiracDelta[l + w]
2 2

Dirac delta functions can be used in Dsolve to find the impulse response or Green's function of

systems represented by linear and certain other differential equations.

This finds the behavior of a harmonic oscillator subjected to an impulse at ¢t = 0.
DSolve[{x''[t] +rx[t] == DiracDelta[t], x[0] == 0, x'[0] == 1}, x[t], t]

{{x[t] >

HeavisideTheta[t] Sin{\/r t}

Vr

DiracDelta [x;,X,...] multidimensional Dirac delta function

HeavisideTheta [x{, X, ...] multidimensional Heaviside theta function
Multidimensional Dirac delta and Heaviside theta functions.

Multidimensional generalized functions are essentially products of univariate generalized

functions.

Here is a derivative of a multidimensional Heaviside function.
D[HeavisideTheta[x, y, 2], x]

DiracDelta[x] HeavisideThetaly, z]

Related to the multidimensional Dirac delta function are two integer functions: discrete delta
and Kronecker delta. Discrete delta 6(n;, ny, ...) is 1 if all the n;=0, and is zero otherwise. Kro-

necker delta ¢, ,, .. is 1 if all the »; are equal, and is zero otherwise.

DiscreteDelta [n,ny,...] discrete delta d(ny, ny, ...)

KroneckerDelta[n;,ny,...] Kronecker delta 6, ,, ...

Integer delta functions.
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Numerical Operations on Functions

Arithmetic

You can do arithmetic with Mathematica just as you would on an electronic calculator.

This is the sum of two numbers.
2.3+5.63
7.93

Here the / stands for division, and the * stands for power.
2.4/8.972
0.0302992

Spaces denote multiplication in Mathematica. The front end automatically replaces spaces
between numbers with light gray multiplication signs.

2x3x4
24

You can use a » for multiplication if you want to.
2x3x%x4
24

You can type arithmetic expressions with parentheses.
(3+4)72-2(3+1)
41

Spaces are not needed, though they often make your input easier to read.
(3+4)7°2-2(3+1)
41



260 | Mathematics and Algorithms

x"y power
-X minus
x/y divide
Xy Z OF X*y*z multiply
X+y+2 add

Arithmetic operations in Mathematica.

Arithmetic operations in Mathematica are grouped according to the standard mathematical
conventions. As usual, 2”3 +4, for example, means (2"3) +4, and not 2" (3+4). You can

always control grouping by explicitly using parentheses.

This result is given in scientific notation.
2.4745

1.28678x10%7

You can enter numbers in scientific notation like this.
2.3x10°70

2.3x107°

Or like this.
2.3*"70

2.3x107°

With Mathematica, you can perform calculations with a particular precision, usually higher than
an ordinary calculator. When given precise numbers, Mathematica does not convert them to an

approximate representation, but gives a precise result.

This gives the result in terms of rational numbers.
1/3+2/1
13

21

This gives the approximate numerical result.
1/3+2/7 //N

0.619048
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This gives the approximate numerical result with 40 significant digits.
N[1/3+2/7, 40]
0.6190476190476190476190476190476190476190

Numerical Mathematics in Mathematica

One of the important features of Mathematica is its ability to give you exact, symbolic, results
for computations. There are, however, computations where it is just mathematically impossible
to get exact "closed form" results. In such cases, you can still often get approximate numerical

results.

There is no "closed form" result for ﬂ sin (sin (x)) d x. Mathematica returns the integral in
symbolic form.
Integrate[Sin[Sin[x]], {x, 0, 1}]

1
J Sin[Sin[x]] dx
0

You can now take the symbolic form of the integral, and ask for its approximate numerical
value.

N[%]

0.430606

When Mathematica cannot find an explicit result for something like a definite integral, it returns
a symbolic form. You can take this symbolic form, and try to get an approximate numerical

value by applying N.

By giving a second argument to N, you can specify the numerical precision to use.
N[Integrate[Sin[Sin[x]], {x, O, 1}], 40]
0.4306061031206906049123773552484657864336

If you want to evaluate an integral numerically in Mathematica, then using Integrate and
applying N to the result is not the most efficient way to do it. It is better instead to use the
function NIntegrate, which immediately gives a numerical answer, without first trying to get
an exact, symbolic, result. You should realize that even when Integrate does not in the end

manage to give you an exact result, it may spend a lot of time trying to do so.
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NIntegrate evaluates numerical integrals directly, without first trying to get a symbolic result.
NIntegrate[Sin[Sin[x]], {x, O, 1}]

0.430606

Integrate NIntegrate definite integrals

Sum NSum sums

Product NProduct products

Solve NSolve solutions of algebraic equations
DSolve NDSolve solutions of differential equations
Maximize NMaximize maximization

Symbolic and numerical versions of some Mathematica functions.

The Uncertainties of Numerical Mathematics

Mathematica does operations like numerical integration very differently from the way it does

their symbolic counterparts.

When you do a symbolic integral, Mathematica takes the functional form of the integrand you
have given, and applies a sequence of exact symbolic transformation rules to it, to try and
evaluate the integral.

However, when Mathematica does a numerical integral, after some initial symbolic preprocess-
ing, the only information it has about your integrand is a sequence of humerical values for it. To
get a definite result for the integral, Mathematica then effectively has to make certain assump-
tions about the smoothness and other properties of your integrand. If you give a sufficiently
pathological integrand, these assumptions may not be valid, and as a result, Mathematica may

simply give you the wrong answer for the integral.

This problem may occur, for example, if you try to integrate numerically a function which has a
very thin spike at a particular position. Mathematica samples your function at a number of
points, and then assumes that the function varies smoothly between these points. As a result, if
none of the sample points come close to the spike, then the spike will go undetected, and its
contribution to the numerical integral will not be correctly included.
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Here is a plot of the function exp(—x?).
Plot[Exp[-x"~2], {x, -10, 10}, PlotRange -> All]

-10 -5 5 10

NIntegrate gives the correct answer for the numerical integral of this function from -10 to
+10.

NIntegrate[Exp[-x"2], {x, -10, 10}]

1.77245

If, however, you ask for the integral from -10000 to 10000, with its default settings
NIntegrate will miss the peak near x =0, and give the wrong answer.

NIntegrate[Exp[-x"2], {x, -10000, 10000}]

>

NIntegrate tries to make the best possible use of the information that it can get about the
numerical values of the integrand. Thus, for example, by default, if NIntegrate notices that the
estimated error in the integral in a particular region is large, it will take more samples in that
region. In this way, NIntegrate tries to "adapt" its operation to the particular integrand you

have given.

The kind of adaptive procedure that NIntegrate uses is similar, at least in spirit, to what Plot
does in trying to draw smooth curves for functions. In both cases, Mathematica tries to go on
taking more samples in a particular region until it has effectively found a smooth approximation

to the function in that region.

The kinds of problems that can appear in numerical integration can also arise in doing other

numerical operations on functions.

For example, if you ask for a numerical approximation to the sum of an infinite series, Mathemat-
ica samples a certain number of terms in the series, and then does an extrapolation to estimate
the contributions of other terms. If you insert large terms far out in the series, they may not be

detected when the extrapolation is done, and the result you get for the sum may be incorrect.
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A similar problem arises when you try to find a numerical approximation to the minimum of a
function. Mathematica samples only a finite number of values, then effectively assumes that the
actual function interpolates smoothly between these values. If in fact the function has a sharp
dip in a particular region, then Mathematica may miss this dip, and you may get the wrong
answer for the minimum.

If you work only with numerical values of functions, there is simply no way to avoid the kinds of
problems we have been discussing. Exact symbolic computation, of course, allows you to get
around these problems.

In many calculations, it is therefore worthwhile to go as far as you can symbolically, and then
resort to numerical methods only at the very end. This gives you the best chance of avoiding
the problems that can arise in purely numerical computations.

Introduction to Numerical Sums, Products and
Integrals

NSum | f, {i,imn, Infinity } | numerical approximation to 3° f
NProduct [ f, {i,imn,Infinity}| numerical approximation to [[° f
NIntegrate [f, {X, Xmin s Xmax} ] numerical approximation to [ f dx

NIntegrate [f, {X, XminrXmax} r {Y s Yimin r Ymax } ]

a . Xmax Ymax
the multiple integral [ dxij dyf

‘min

Numerical sums, products, and integrals.

. . . . 1
Here is a numerical approximation to >72; .
E

NSum[1l/i”3, {i, 1, Infinity}]

1.20206
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NIntegrate can handle singularities in the integration region.
NIntegrate[l/Sqrt[x (1-x)], {x, 0, 1}]
3.14159

You can do numerical integrals over infinite regions.
NIntegrate[Exp[-x"2], {x, -Infinity, Infinity}]

1.77245

Here is a double integral over a triangular domain. Note the order in which the variables are
given.

NIntegrate[Sin[xy], {x, 0, 1}, {y, 0, x}]

0.119906

Here is a double integral over a more complicated domain.
NIntegrate[ Sin[xy], {x, O, 1}, {y, O, Sqrt[x"3+3]}]
0.727332

Numerical Integration

N[Integrate [expr, {X, Xupin s Xmax} ] ] try to perform an integral exactly, then find numerical
approximations to the parts that remain

NIntegrate [expr, {X, Xminr Xmax } ] find a numerical approximation to an integral
NIntegrate [expr, {X, Xmin s Xmax} r {1 Yminr Ymax }r---]

multidimensional numerical integral [*“dx [*“dy... expr

Ymin

NIntegrate [expr, {X, Xminr X1 1 X271 -« s Xmax } )
do a numerical integral along a line, starting at x,,,, going
through the points x;, and ending at x,,,,

Numerical integration functions.

This finds a numerical approximation to the integral fqe‘x} dx.

NIntegrate[Exp[-x"3], {x, O, Infinity}]

0.89298
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Here is the numerical value of the double integral fldxfilldy(x2 +3?).
NIntegrate[x"2+y"2, {x, -1, 1}, {y, -1, 1}]
2.66667

An important feature of NIntegrate is its ability to deal with functions that "blow up" at known
points. NIntegrate automatically checks for such problems at the endpoints of the integration
region.

The function 1/\/; blows up at x =0, but NIntegrate still succeeds in getting the correct
value for the integral.

NIntegrate[l / Sqrt[x], {x, 0, 1}]

2.

Mathematica can find the integral of l/\/? exactly.
Integrate[l / Sqrt[x], {x, 0, 1}]
2

NIntegrate detects that the singularity in 1/x at x=0 is not integrable.
NIntegrate[l/x, {x, 0, 1}]

>

>
191612.

NIntegrate does not automatically look for singularities except at the endpoints of your integra-
tion region. When other singularities are present, NIntegrate may not give you the right
answer for the integral. Nevertheless, in following its adaptive procedure, NIntegrate will often
detect the presence of potentially singular behavior, and will warn you about it.
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NIntegrate warns you of a possible problem due to the singularity in the middle of the integra-
tion region. The final result is numerically quite close to the correct answer.

NIntegrate[x"~2Sin[l/x], {x, -1, 2}]

>

1.38755

If you know that your integrand has singularities at particular points, you can explicitly tell
NIntegrate to deal with them. NIntegrate [expr, {Xx, Xpin, X1,y X2, ..., Xmae} ] iNtegrates expr from

Xmin £O x,qc, l00KiNg for possible singularities at each of the intermediate points x;.

This gives the same integral, but now explicitly deals with the singularity at x =0.
NIntegrate[x~2Sin[1/x], {x, -1, 0, 2}]
1.38755

You can also use the list of intermediate points x; in NIntegrate to specify an integration con-
tour to follow in the complex plane. The contour is taken to consist of a sequence of line seg-

ments, starting at x,,;,, going through each of the x;, and ending at x,,,,.

This integrates 1/x around a closed contour in the complex plane, going from —1, through the
points —i, 1 and i, then back to —1.

NIntegrate[l/x, {x, -1, -I, 1, I, -1}]

0.+6.283191

The integral gives 2 i, as expected from Cauchy's theorem.
N[2PiI]
0. +6.283191

option name default value

MinRecursion 0 minimum number of recursions for the
integration method

MaxRecursion Automatic maximum number of recursions for the
integration method

MaxPoints Automatic maximum total number of times to sample

the integrand

Special options for NIntegrate.
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When NIntegrate tries to evaluate a numerical integral, it samples the integrand at a sequence
of points. If it finds that the integrand changes rapidly in a particular region, then it recursively
takes more sample points in that region. The parameters MinRecursion and MaxRecursion
specify the minimum and maximum number of recursions to use. Increasing the value of
MinRecursion guarantees that NIntegrate will use a larger number of sample points.
MaxPoints and MaxRecursion limit the number of sample points which NIntegrate will ever try

to use. Increasing MinRecursion Or MaxRecursion Will make NIntegrate work more slowly.

With the default settings for all options, NIntegrate misses the peak in exp(—(x - 1)2) near
x =1, and gives the wrong answer for the integral.
NIntegrate[Exp[- (x-1) ~2], {x, -1000, 1000}]

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. >

NIntegrate::ncvb:
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near
{x} = {3.87517}. NIntegrate obtained 1.6330510571683285" and
0.004736564243403896 ° for the integral and error estimates. >

1.63305

With the option MinRecursion -> 3, NIntegrate samples enough points that it notices the
peak around x = 1. With the default setting of MaxRecursion, however, NIntegrate cannot
use enough sample points to be able to expect an accurate answer.

NIntegrate[Exp[- (x-1) “2], {x, -50000, 1000}, MinRecursion - 3]

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. >

NIntegrate::ncvb:
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near
{x} = {-8.44584}. NIntegrate obtained 1.8181913371063452"
and 1.165089629798181 " for the integral and error estimates. >

1.81819

With this setting of MaxRecursion, NIntegrate can get an accurate answer for the integral.
NIntegrate[Exp[- (x-1) “2], {x, -50000, 1000}, MinRecursion -» 3, MaxRecursion -» 20]
NiIntegrate::slwcon:

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. >

1.77242
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Another way to solve the problem is to make NIntegrate break the integration region into
several pieces, with a small piece that explicitly covers the neighborhood of the peak.

NIntegrate[Exp[- (x-1)~2], {x, -1000, -10, 10, 1000} ]

1.77245

For integrals in many dimensions, it can take a long time for NIntegrate to get a precise
answer. However, by setting the option MaxPoints, you can tell NIntegrate to give you just a

rough estimate, sampling the integrand only a limited number of times.

Here is a way to get a rough estimate for an integral that takes a long time to compute.

NIntegrate[l / Sqrt[x + Log[y + 2] "~ 2],
{x, 0, 1}, {y, 0, 1}, {2, O, 1}, MaxPoints -> 1000]

1.45489

Numerical Evaluation of Sums and Products

Nsum [ f, {iiminrimax} ] find a numerical approximation to the sum Z;:l f
NSum [, {i,imin s imaxdi } ] use step di in the sum
NProduct [ f, {i,iminrimax} ] find a numerical approximation to the product []::’:‘;_ f

Numerical sums and products.

1

Ui

This gives a numerical approximation to ;2

NSum[1l/ (i3 +i!), {i, 1, Infinity)}]

0.64703

There is no exact result for this sum, so Mathematica leaves it in a symbolic form.
Sum[l/ (i3 +i!), {i, 1, Infinity}]

© 1

i1 id+dn
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You can apply N explicitly to get a numerical result.
N[%]
0.64703

The way Nsum works is to include a certain number of terms explicitly, and then to try and
estimate the contribution of the remaining ones. There are three approaches to estimating this
contribution. The first uses the Euler-Maclaurin method, and is based on approximating the sum
by an integral. The second method, known as the Wynn epsilon method, samples a number of
additional terms in the sum, and then tries to fit them to a polynomial multiplied by a decaying
exponential. The third approach, useful for alternating series, uses an alternating sighs method;
it also samples a number of additional terms and approximates their sum by the ratio of two

polynomials (Padé approximation).

option name default value

Method Automatic Automatic, "EulerMaclaurin",
"WynnEpsilon", or
"AlternatingSigns"

NSumTerms 15 number of terms to include explicitly

VerifyConvergence True whether the convergence of the series

should be verified
Special options for NSum.

If you do not explicitly specify the method to use, Nsum will try to choose between the
EulerMaclaurin Or WynnEpsilon methods. In any case, some implicit assumptions about the
functions you are summing have to be made. If these assumptions are not correct, you may get
inaccurate answers.

The most common place to use NSum is in evaluating sums with infinite limits. You can, how-
ever, also use it for sums with finite limits. By making implicit assumptions about the objects
you are evaluating, Nsum can often avoid doing as many function evaluations as an explicit Sum
computation would require.

0 -n

This finds the numerical value of Z,ll o¢ " by extrapolation techniques.

NSum[Exp[-n], {n, O, 100}]
1.58198
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You can also get the result, albeit much less efficiently, by constructing the symbolic form of the
sum, then evaluating it numerically.

Sum[Exp[-n], {n, 0, 100}] // N
1.58198

NProduct works in essentially the same way as NSum, with analogous options.

Numerical Equation Solving

NSolve [lhs==rhs,x] solve a polynomial equation numerically
NSolve [ {lhs\==rhs| ,lhsy==rhsy, ...} , {x,y,...}]
solve a system of polynomial equations numerically

FindRoot [lhs==rhs, {x,x0} ] search for a numerical solution to an equation, starting at
X = Xo

FindRoot [ {lhs\==rhsy ,lhsy==rhsy, ...} , {{x, X0} s {Ys Yo} s---}]

search for numerical solutions to simultaneous equations

Numerical root finding.

NSolve gives you humerical approximations to all the roots of a polynomial equation.
NSolve[x"5+x+1 ==0, x]

{{x--0.754878}, {x>-0.5-0.8660251}, {x—>-0.5+0.8660251},
{x—>0.877439 - 0.744862 1}, {x > 0.877439 + 0.7448621}}

You can also use NSolve to solve sets of simultaneous equations numerically.
NSolve[{x+y==2, x-3y+2z==3, x-y+2==0}, {x,y, z}]

{{x>3.5, y>-1.5, z>-5.}}

If your equations involve only linear functions or polynomials, then you can use NSolve to get
numerical approximations to all the solutions. However, when your equations involve more
complicated functions, there is in general no systematic procedure for finding all solutions, even
numerically. In such cases, you can use FindRoot to search for solutions. You have to give
FindRoot a place to start its search.

This searches for a numerical solution, starting at x=1.
FindRoot[3 Cos[x] == Log[x], {x, 1}]
{x—>1.44726}
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The equation has several solutions. If you start at a different x, FindRoot may return a differ-
ent solution.

FindRoot[3 Cos[x] == Log[x], {x, 10}]

{x-13.1064}

You can search for solutions to sets of equations. Here the solution involves complex numbers.

FindRoot[{x == Log[y], y == Log[x]}, {{x, I}, {¥, 2}}]
{x-0.318132 +1.33724 i, y—0.318132 + 1.33724 i}

Numerical Solution of Polynomial Equations

When Solve cannot find solutions in terms of radicals to polynomial equations, it returns a
symbolic form of the result in terms of Root objects.

Solve[x"5+7x+1==0, x]

{{x>Root[1+7ml+m1%&, 1]}, {x>Root[1+ 78l +u1%s, 2]},
{x>Root[1+7ul+u1%&, 3|}, {x>Root[1+7nl+ul®s&, 4]}, {x>Root[1+ 70l +u1%s&, 5]}}

You can get numerical solutions by applying N.
N[%]

{{x—>-0.142849}, {x—>-1.11308 - 1.15173 i},
{x->-1.11308 + 1.15173 1}, {x—>1.1845-1.151391i}, {x—1.1845 + 1.15139i}}

This gives the numerical solutions to 25-digit precision.
N[%%, 25]

{{x—->-0.1428486455250044341134116},
{x->-1.113077976547710735600398 - 1.151734362151674305046770 1},
{x—->-1.113077976547710735600398 + 1.151734362151674305046770 1},
{x—>1.184502299310212952657104 - 1.151390075408837074699147 i},
{x—->1.184502299310212952657104 + 1.151390075408837074699147 1}}

You can use NSolve to get numerical solutions to polynomial equations directly, without first
trying to find exact results.
NSolve[x"7 +x+1 ==0, x]

{{x—-0.796544}, {x— -0.705298 - 0.637624 1},
{x->-0.705298 + 0.637624 1}, {x—0.123762 - 1.056651},
{x>0.123762 + 1.05665 1}, {x—0.979808 - 0.516677 i}, {x— 0.979808 + 0.516677 i}}



Mathematics and Algorithms | 273

NSolve [ poly==0,x] get approximate numerical solutions to a polynomial
equation
NSolve [poly==0,x,n] get solutions using n-digit precision arithmetic

NSolve [ {eqn,,eqn,,...} , {vary,vary,...}]

get solutions to a polynomial system

Numerical solution of polynomial equations and systems.

NSolve will give you the complete set of numerical solutions to any polynomial equation or
system of polynomial equations.

NSolve can find solutions to sets of simultaneous polynomial equations.

NSolve[{x"2+y~"2==1, x"3+y"3 ==2}, {x, y}]

{{x—>-1.09791 - 0.839887 i, y>-1.09791 + 0.839887 i},
{x>-1.09791 + 0.839887 i, y > -1.09791 - 0.839887 i},
{x-1.22333+0.0729987 i, y > -0.125423 + 0.712005 i},
{x-1.22333-0.0729987 1, y > -0.125423 - 0.7120051},

{x->-0.125423 - 0.7120051, y—»>1.22333 -0.0729987 i},
{x->-0.125423 + 0.7120051, y—>1.22333 +0.0729987 1}}

Numerical Root Finding

NSolve gives you a general way to find numerical approximations to the solutions of polynomial
equations. Finding numerical solutions to more general equations, however, can be much more
difficult, as discussed in "Equations in One Variable". FindRoot gives you a way to search for a

numerical root of a function or a numerical solution to an arbitrary equation, or set of equations.

FindRoot [ f, {x,x0} ] search for a numerical root of f, starting with x = xg

FindRoot [lhs==rhs, {x,x0} ] search for a numerical solution to the equation lhs == rhs,
starting with x = xg

FindRoot [fl lf2l cee [y { {xrxo} ’ {ylyO} 4 }]
search for a simultaneous numerical root of all the f;
FindRoot [ {eqn,,eqn,,...} ; {{x,; %0} s {¥s Y0} s---}]

search for a numerical solution to the simultaneous equa-
tions eqn;

Numerical root finding.
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The curves for cos (x) and x intersect at one point.
Plot[{Cos[x], x}, {x, -1, 1}]

05t

This finds a numerical approximation to the value of x at which the intersection occurs. The 0
tells FindRoot what value of x to try first.

FindRoot [Cos[x] == x, {x, 0}]
(x> 0.739085)

In trying to find a solution to your equation, FindRoot starts at the point you specify, and then
progressively tries to get closer and closer to a solution. Even if your equations have several
solutions, FindRoot always returns the first solution it finds. Which solution this is will depend
on what starting point you chose. If you start sufficiently close to a particular solution,

FindRoot will usually return that solution.

The function sin(x) has an infinite number of roots of the form x = nx. If you start sufficiently
close to a particular root, FindRoot will give you that root.

FindRoot [Sin[x], {x, 3}]

{x-3.14159}

If you start with x =6, you get a numerical approximation to the root x =2x.
FindRoot [Sin[x], {x, 6}]
{x—->6.28319}

If you want FindRoot to search for complex solutions, then you have to give a complex
starting value.
FindRoot [Sin[x] == 2, {x, I}]

{x->1.5708 +1.31696 1}

This finds a zero of the Riemann zeta function.
FindRoot[Zeta[l/2+It], {t, 12}]

{t->14.1347 - 2.54839x107 i}
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This finds a solution to a set of simultaneous equations.
FindRoot [{Sin[x] == Cos[y], x+y == 1}, {{x, 1}, {y, 1}}]
{x->-1.85619, y—>2.85619}

The variables used by FindRoot can have values that are lists. This allows you to find roots of

functions that take vectors as arguments.

This is a way to solve a linear equation for the variable x.
FindRoot[{{1, 2}, {3, 4}}.x == {5, 6}, {x, {1, 1}}]
(x> {-4., 4.5}}

This finds a normalized eigenvector x and eigenvalue a.
FindRoot [{{{1, 2}, {3, 4}}.x==ax, x.x == 1}, {{x, {1, 1}}, {a, 1}}]

{x - {0.415974, 0.909377}, a—5.37228}

Introduction to Numerical Differential Equations

NDSolve [eqnsry, {xl Xmin lxmwc} J
solve numerically for the function y, with the independent
variable x in the range x,,;, t0 x,4x

NDSolve [eqnsl {yl rY2r } 14 {xrxminl-xmwc} ]

solve a system of equations for the y;

Numerical solution of differential equations.

This generates a numerical solution to the equation y'(x) = y(x) with 0 < x < 2. The result is given
in terms of an InterpolatingFunction.

NDSolve[{y'[x] == y[x], y[0] == 1}, vy, {x, 0, 2}]
{{y » InterpolatingFunction[{{0., 2.}}, <>]}}

Here is the value of y (1.5).
y[1.5] /. %
{4.48169}
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With an algebraic equation such as x> +3x+1=0, each solution for x is simply a single number.
For a differential equation, however, the solution is a function, rather than a single number. For
example, in the equation y’(x) = y(x), you want to get an approximation to the function y(x) as the
independent variable x varies over some range.

Mathematica represents numerical approximations to functions as InterpolatingFunction
objects. These objects are functions which, when applied to a particular x, return the approxi-
mate value of y(x) at that point. The InterpolatingFunction effectively stores a table of values

for y(x;), then interpolates this table to find an approximation to y(x) at the particular x you

request.
y[x]/ .solution use the list of rules for the function y to get values for y[x]
InterpolatingFunction [data] [x] evaluate an interpolated function at the point x

Plot [Evaluate [y[x] / .solution] , {X; Xpmin r Xmax } ]

plot the solution to a differential equation

Using results from NDSolve.

This solves a system of two coupled differential equations.
NDSolve[{y'[x] == z[x], z'[x] == -y[x], Y[0] == 0, z[0] == 1}, {y, 2}, {x, O, Pi}]

{{y - InterpolatingFunction[{{0., 3.14159}}, <>], z - InterpolatingFunction[{{0., 3.14159}}, <>]}}

Here is the value of z[2] found from the solution.
z[2] /. %
{-0.416147}

Here is a plot of the solution for z[x] found on line 3. Plot is discussed in "Basic Plotting".
Plot[Evaluate[z[x] /. %3], {x, O, Pi}]
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NDSolve [egn, i, {X; Xmin s Xmax } ¢ {E 1 tmin s tmax } 1 -+ -]

solve a partial differential equation

Numerical solution of partial differential equations.
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Numerical Solution of Differential Equations

The function NDsolve discussed in "Numerical Differential Equations" allows you to find numeri-
cal solutions to differential equations. NDSolve handles both single differential equations, and
sets of simultaneous differential equations. It can handle a wide range of ordinary differential
equations as well as some partial differential equations. In a system of ordinary differential
equations there can be any number of unknown functions y;, but all of these functions must
depend on a single "independent variable" x, which is the same for each function. Partial
differential equations involve two or more independent variables. NDSsolve can also handle

differential-algebraic equations that mix differential equations with algebraic ones.

NDSolve [ {eqnlleqnzl“'} rYr {xrxminlxmwc}]

find a numerical solution for the function y with x in the
range X, to X

NDSolve [ {eqnlreqnzr---} VY2 r)e e i Xy K 1 Xma |

find numerical solutions for several functions y;

Finding numerical solutions to ordinary differential equations.

NDSolve represents solutions for the functions y; as InterpolatingFunction objects. The
InterpolatingFunction objects provide approximations to the y;, over the range of values x,;,

to x,.. for the independent variable x.

NDSolve finds solutions iteratively. It starts at a particular value of x, then takes a sequence of

steps, trying eventually to cover the whole range x,,;, t0 x,ux.

In order to get started, NDSolve has to be given appropriate initial or boundary conditions for
the y; and their derivatives. These conditions specify values for y;[x], and perhaps derivatives
y;'[x], at particular points x. In general, at least for ordinary differential equations, the conditions

you give can be at any x: NDSolve will automatically cover the range x,,;, t0o x,u.

This finds a solution for y with x in the range 0 to 2, using an initial condition for y[0].
NDSolve[{y'[x] == y[x], Y[O] == 1}, vy, {x, 0, 2}]

{{y - InterpolatingFunction[{{0., 2.}}, <>]}}
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This still finds a solution with x in the range 0 to 2, but now the initial condition is for y[3].
NDSolve[{y'[x] == y[x], y[3] == 1}, v, {x, 0, 2}]

{{y » InterpolatingFunction[{{0., 2.}}, <>]}}

Here is a simple boundary value problem.
NDSolve[{y''[x] +xy[x] == 0, y[0] ==1, y[1] == -1}, ¥, {x, 0, 1}]

{{y » InterpolatingFunction[{{0., 1.}}, <>]}}

When you use NDsolve, the initial or boundary conditions you give must be sufficient to deter-

mine the solutions for the y; completely. When you use DSolve to find symbolic solutions to

differential equations, you can get away with specifying fewer initial conditions. The reason is
that Dsolve automatically inserts arbitrary constants c[i] to represent degrees of freedom
associated with initial conditions that you have not specified explicitly. Since NDSolve must give
a numerical solution, it cannot represent these kinds of additional degrees of freedom. As a
result, you must explicitly give all the initial or boundary conditions that are needed to deter-

mine the solution.

In a typical case, if you have differential equations with up to »™ derivatives, then you need to

give initial conditions for up to (n — )" derivatives, or give boundary conditions at » points.

With a third-order equation, you need to give initial conditions for up to second derivatives.
NDSolve[{y'''[x] +8y''[x] +17y'[x] +10y[x] ==0,

Y[O] == 6, Y' [0] == -20, Y‘ ' [0] == 84}, Y, {x%, 0, 1}]
{{y » InterpolatingFunction[{{0., 1.}}, <>]}}

This plots the solution obtained.

Plot[Evaluate[y[x] /. %], {x, 0, 1}]
6
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With a third-order equation, you can also give boundary conditions at three points.
NDSolve[{y'''[x] +Sin[x] == 0, y[0] == 4, y[1] == 7, y[2] == 0}, ¥, {x, O, 2}]

{{y » InterpolatingFunction[{{0., 2.}}, <>]}}

Mathematica allows you to use any appropriate linear combination of function values and
derivatives as boundary conditions.

NDSolve[{y''[x] +y[x] == 12x, 2y[0] -y '[0] == -1, 2y[1] +y'[1] == 9}, ¥, {x, O, 1}]
{{y » InterpolatingFunction[{{0., 1.}}, <>]}}

In most cases, all the initial conditions you give must involve the same value of x, say x,. As a
result, you can avoid giving both x,;,, and x,.. explicitly. If you specify your range of x as {x, x|},

then Mathematica will automatically generate a solution over the range x, to x;.

This generates a solution over the range 0 to 2.
NDSolve[{y'[x] == y[x], Y[0] == 1}, vy, {x, 2}]

{{y » InterpolatingFunction[{{0., 2.}}, <>]}}

You can give initial conditions as equations of any kind. In some cases, these equations may
have multiple solutions. In such cases, NDSolve will correspondingly generate multiple solu-
tions.

The initial conditions in this case lead to multiple solutions.
NDSolve[{y'[x] "2 -y[x] "2 ==0, y[0] "2 == 4}, y[x], {x, 1}]

Hy
{y
{y
{y

x] - InterpolatingFunction]|
x] - InterpolatingFunction|
x] - InterpolatingFunction]|
x] - InterpolatingFunction|

Here is a plot of all the solutions.
Plot[Evaluate[y[x] /. %], {x, 0, 1}]

You can use NDSolve to solve systems of coupled differential equations.
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This finds a numerical solution to a pair of coupled equations.
sol = NDSolve[
{x'[t

-y[t] -x[t]1"2, y'[t] == 2x[t] -y[t], x[0] == y[0] == 1}, {x, ¥}, {t, 10}]
{{x - InterpolatingFunction[{{0., 10.}}, <>], y— InterpolatingFunction[{{0., 10.}}, <>]}}
This plots the solution for y from these equations.

Plot [Evaluate[y[t] /. sol], {t, 0, 10}, PlotRange -» All]

This generates a parametric plot using both x and y.

10

ParametricPlot[Evaluate[{x[t], y[t]} /. sol], {t, O, 10}, PlotRange -> All]
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Unknown functions in differential equations do not necessarily have to be represented by single

symbols. If you have a large number of unknown functions, you will often find it more conve-
nient, for example, to give the functions names like yl[i].

{y[1] ' [x]

This constructs a set of five coupled differential equations and initial conditions
eqgns = Join[Table[y[i] '[x] == y[i-1][x] -y[i][x], {i, 2, 4}],
Table[y[i] [0] == 0, {i, 2, 5}]]

-y[1][x], v[5] '[x] == y[4][x], y[1][0] == 1},
{y[2)'[x] =y([1][x] -y[2] [x], y[3]'[x] =¥(

y[4]'[x] =y[3][x] -y[4][x], y[1]'[x] = -y
y[1][0] =1, y[2][0] » Y[31[0] =0, y[4]

This solves the equations.

NDSolve[eqns, Table[y[i], {i, 5}], {x, 10}]
{{y[1] » InterpolatingFunction[{{0., 10.}}, <>],
y[2] -» InterpolatingFunction[{{0., 10.}}, <>], y[3] -» InterpolatingFunction[{{0., 10.}}, <>],
y[4] -» InterpolatingFunction[{{0., 10.}}, <>],

y[5] » InterpolatingFunction[{{0., 10.}}, <>

11}
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Here is a plot of the solutions.

Plot[Evaluate[Table[y[i] [x], {i, 5}] /. %], {x, O, 10}]
10
08f
06/
0.4f

02f

NDSolve can handle functions whose values are lists or arrays. If you give initial conditions like
y[0] == {vi, v, ..., v,}, then NDSolve will assume that y is a function whose values are lists of

length n.

This solves a system of four coupled differential equations.

NDSolve[{y''[x] == -RandomReal[{0, 1}, {4, 4}].v[x],
y[0] ==y '[0] == Table[1, {4}1}, ¥, {x, O, 8}]

{{y » InterpolatingFunction[{{0., 8.}}, <>]}}

Here are the solutions.

With[{s = y[x] /. First[%]},
Plot[{s[[1]], s[[2]], s[[3]], s[[4]1]}, {x, O, 8}, PlotRange -> All]]

option name default value

MaxSteps Automatic maximum number of steps in x to take
StartingStepSize Automatic starting size of step in x to use
MaxStepSize Automatic maximum size of step in x to use
NormFunction Automatic the norm to use for error estimation

Special options for NDSolve.

NDSolve has many methods for solving equations, but essentially all of them at some level
work by taking a sequence of steps in the independent variable x, and using an adaptive proce-
dure to determine the size of these steps. In general, if the solution appears to be varying
rapidly in a particular region, then NDSolve will reduce the step size or change the method so
as to be able to track the solution better.
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This solves a differential equation in which the derivative has a discontinuity.
NDSolve[{y'[x] == If[x<0, 1/ (x-1),1/(x+1)], y[-5] ==5}, v, {x, -5, 5}]

{{y » InterpolatingFunction[{{-5., 5.}}, <>]}}

NDSolve reduced the step size around x =0 so as to reproduce the kink accurately.
Plot[Evaluate[y[x] /. %], {x, -5, 5}]

5.0

Through its adaptive procedure, NDSolve is able to solve "stiff" differential equations in which
there are several components which vary with x at very different rates.

In these equations, y varies much more rapidly than z.

sol =
NDSolve[{y'[x] == -40y[x], z'[x] == -z[x] /10, y[0] == z[0] == 1}, {y, z}, {x, O, 1}]
{{y » InterpolatingFunction[{{0., 1.}}, <>], 2 - InterpolatingFunction[{{0., 1.}}, <>]}}

NDSolve nevertheless tracks both components successfully.
Plot[Evaluate[{y[x], z[x]} /. sol], {x, O, 1}, PlotRange -> All]
10
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NDSolve follows the general procedure of reducing step size until it tracks solutions accurately.
There is a problem, however, when the true solution has a singularity. In this case, NDSolve
might go on reducing the step size forever, and never terminate. To avoid this problem, the
option MaxSteps specifies the maximum number of steps that NDsolve will ever take in attempt-

ing to find a solution. For ordinary differential equations the default setting is
MaxSteps -> 10000.
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NDSolve stops after taking 10000 steps.
NDSolve[{y'[x] == -1/%x"2, y[-1] == -1}, y[x], {x, -1, 0}]

>

{{y[x] - InterpolatingFunction[{{—1. ’ —1.00413><10’172}}, <>} [x] }}

There is in fact a singularity in the solution at x =0.

Plot [Evaluate[y[x] /. %], {x, -1, 0}]

-10 -08 -06 -04 -02

The default setting for MaxSteps should be sufficient for most equations with smooth solutions.
When solutions have a complicated structure, however, you may occasionally have to choose
larger settings for MaxsSteps. With the setting MaxSteps -> Infinity there is no upper limit on

the number of steps used.

To take the solution to the Lorenz equations this far, you need to remove the default bound on
MaxSteps.

NDSolve[{x '[t] == -3 (x[t] -y[t]), ¥y '[t] == -x[t] z[t] +26.5%x[t] -y[t],
z'[t] == x[£] y[t] - z[t], x[0] == 2[0] == 0, y[0] == 1},
{x, v, z}, {t, 0, 200}, MaxSteps -> Infinity]

{{x - InterpolatingFunction[{{0., 200.}}, <>],
y - InterpolatingFunction[{{0., 200.}}, <>], 2z - InterpolatingFunction[{{0., 200.}}, <>]}}

Here is a parametric plot of the solution in three dimensions.

ParametricPlot3D[Evaluate[{x[t], y[t], z[t]} /. %], {t, O, 200},
PlotPoints -> 10000, ColorFunction -» (ColorData["Rainbow"] [#4] &) ]

40
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When NDSolve solves a particular set of differential equations, it always tries to choose a step
size appropriate for those equations. In some cases, the very first step that NDsolve makes
may be too large, and it may miss an important feature in the solution. To avoid this problem,

you can explicitly set the option startingStepsize to specify the size to use for the first step.

The equations you give to NDsolve do not necessarily all have to involve derivatives; they can
also just be algebraic. You can use NDSolve to solve many such differential-algebraic equations.

This solves a system of differential-algebraic equations.

NDSolve[{x'[t] == y[t] "2 +x[t] y[t],
2x[t]"2+y[t] "2 ==1, x[0] == 0, y[O0] == 1}, {x, ¥}, {t, O, 5}]

{{x - InterpolatingFunction[{{0., 5.}}, <>], y - InterpolatingFunction[{{0., 5.}}, <>]}}

Here is the solution.
Plot[Evaluate[{x[t], y[t]} /. %], {t, O, 5}]

10

NDSolve [ {eqn ,eqn, ...} yuy {tstmin s tmax Y ¢ {X s Xmin s Xmax } v ---]
solve a system of partial differential equations for u
NDSolve [ {eqnl r€qny et {uwrouz o} o {tr bin g tmax } o {X 0 Xmin s Xmax } v -+

solve a system of partial differential equations for several
functions u;

Finding numerical solutions to partial differential equations.

This finds a numerical solution to the wave equation. The result is a two-dimensional interpolat-
ing function.

NDSolve[{D[u[t, x], t, t] == D[u[t, x], x, x], u[0, x] == Exp[-x"2],
Derivative[l, 0] [u] [0, x] == 0, u[t, -6] == u[t, 6]}, u, {t, 0, 6}, {x, -6, 6}]

{{u - InterpolatingFunction[{{0., 6.}, {..., 6., 6., «..}}, <>]}}



Mathematics and Algorithms | 285

This generates a plot of the result.
Plot3D[Evaluate[u[t, x] /. First([%]], {t, O, 6}, {x, -6, 6}, PlotPoints -> 50]

This finds a numerical solution to a nonlinear wave equation.
NDSolve[{D[u[t, x], t, t] ==D[u[t, x], x, x] + (L -u[t, x]"2) (1+2u[t, x]),

u[0, x] == Exp[-x"2], Derivative[l, 0] [u] [0, x] == O,
u[t, —10] == u[t, 10]]’! u, {tr ol 10]’! {X, '101 10]’]

{{u - InterpolatingFunction[{{0., 10.}, {..., -10., 10., ...}}, <>]}}

Here is a 3D plot of the result.
Plot3D[Evaluate[u[t, x] /. First[%]], {t, O, 10}, {x, -10, 10}]

This is a higher-resolution density plot of the solution.

DensityPlot [Evaluate[u[l0-t, x] /. First[%%]],
{x, -10, 10}, {t, 0, 10}, PlotPoints -> 200, Mesh -> False]
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Here is a version of the equation in 2+1 dimensions.

eqn = D[u[t, x, y], t, t] ==
D[u[t, x, y], x, x] +D[u[t, x, y]l, ¥, ¥]1/2+ (1-ult, x,y]"2) (1+2u[t, x, y])

w9 e, x, y] = (L+2ult, x, y]) (L-ult, x, y1%) + —u®%?[t, x, y] +u®?V (¢, x, y]
2

This solves the equation.

NDSolve[{eqgn, u[0, x, y] == Exp[- (x"2+y"2)], u[t, -5, y] == u[t, 5, y],
uf[t, x, -5] == u[t, x, 5], Derivative[l, O, 0] [u] [0, x, y] == O},
u, {tr or 4]‘! {X, '51 5}! {Y! '51 5]']

{{u - InterpolatingFunction[{{0., 4.}, {..., 5., 5., v}, {eee, =5., 5., «..}}, <>1}}

This generates a list of plots of the solution.

Table[Plot3D[Evaluate[u[t, x, y] /. First[%]], {x, -5, 5}, {y, -5, 5},
PlotRange -> All, PlotPoints -> 100, Mesh -> False], {t, 1, 4}]
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Numerical Optimization

FindMinimum [ f, {x,x0}]

FindMinimum [ f, x]

search for a local minimum of f, starting at x = xj
search for a local minimum of f
FindMinimum [fl { {X,XO} ’ {nyO} ’ } ]

FindMinimum [ {f,cons}, {{x,%0},{YsYo}s---}]

search for a local minimum in several variables

FindMinimum [ {f,cons}, {x,y,...}]

starting at x = xo, ¥y = yo,
FindMaximum [ f,x] , etc

search for a local minimum subject to the constraints cons

Searching for local minima and maxima.

search for a local minimum subject to the constraints cons
search for a local maximum

FindMinimum[Gamma[x], {x, 2}]

This finds the value of x which minimizes I'(x), starting at x =2.
{0.885603, {x-1.46163}}

The last element of the list gives the value at which the minimum is achieved.
Gamma[x] /. Last[%]
0.885603

Like FindRoot, FindMinimum and FindMaximum work by starting from a point, then progres-

sively searching for a minimum or maximum. But since they return a result as soon as they find

This curve has two local minima.

anything, they may give only a local minimum or maximum of your function, not a global one.
\

Plot[x"4-3x"2+x, {x, -3, 2}]

\ 15
\
\

\
\
\ 10
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Starting at x =1, you get the local minimum on the right.
FindMinimum[x"4-3x"2+x, {x, 1}]

{-1.07023, {x—>1.1309}}

This gives the local minimum on the left, which in this case is also the global minimum.
FindMinimum[x*4-3x"2+x, {x, -1}]

{-3.51391, {x--1.30084}}

You can specify variables without initial values.
FindMinimum[x"4 -3 x"2 +x, Xx]

{-1.07023, {x—-1.1309}}

You can specify a constraint.
FindMinimum[{x"4-3x"2+x, x < 0}, x]

(-3.51391, {x--1.30084}}

NMinimize [ f,x] try to find the global minimum of f
NMinimize [f, {x,y,...}] try to find the global minimum over several variables
NMaximize [ f,x] try to find the global maximum of f
NMaximize [f, {x,y,...}] try to find the global maximum over several variables

Finding global minima and maxima.

This immediately finds the global minimum.
NMinimize[x"4-3x"2 +x, x]

(-3.51391, {x--1.30084}}

NMinimize and NMaximize are numerical analogs of Minimize and Maximize. But unlike
Minimize and Maximize they usually cannot guarantee to find absolute global minima and
maxima. Nevertheless, they typically work well when the function f is fairly smooth, and has a
limited number of local minima and maxima.



Mathematics and Algorithms | 289

NMinimize [ {f,cons}, {x,y,...}] try to find the global minimum of f subject to constraints
cons

NMaximize [ {f,cons}, {x,y,...}] try to find the global maximum of f subject to constraints
cons

Finding global minima and maxima subject to constraints.

With the constraint x >0, NMinimize will give the local minimum on the right.
NMinimize[{x"4-3x"2+x, x > 0}, x]

{-1.07023, {x—>1.1309}}

This finds the minimum of x + 2 y within the unit circle.
NMinimize[{x+2y, x"2+y"2 <=1}, {x, y}]
{-2.23607, {x—-0.447214, y—>-0.894427}}

In this case Minimize can give an exact result.

Minimize[{x+2y, x"2+y~2<=1}, {x, v}]

N O )

Vs

But in this case it cannot.
Minimize[{Cos[x+2y], x"2+y"2 <=1}, {x, y}]

Minimize[{Cos[x+2y], x* +y? =1}, (x, y}]

This gives a numerical approximation, effectively using NMinimize.
N[%]
{-0.617273, {x—>0.447214, y > 0.894427}}

If both the objective function f and the constraints cons are linear in all variables, then minimiza-
tion and maximization correspond to a linear programming problem. Sometimes it is convenient

to state such problems not in terms of explicit equations, but instead in terms of matrices and

vectors.
LinearProgramming[c,m,b] find the vector x which minimizes c.x subject to the con-
straints m.x=b and x>0
LinearProgramming[c,m,b,!] use the constraints m.x=b and x=1

Linear programming in matrix form.



290 | Mathematics and Algorithms

Here is a linear programming problem in equation form.
Minimize[{2x+3y, x+5y>=10, x-y >=2, x >= 1}, {x, y}]
32 10 4

|

3 3 3

Here is the corresponding problem in matrix form.
LinearProgramming[{2, 3}, {{1, 5}, {1, -1}, {1, 0}}, {10, 2, 1}]
10 4

5y

3 3

You can specify a mixture of equality and inequality constraints by making the list b be a
sequence of pairs {b;, s;}. If s; is 1, then the it constraint is m; x=b;. If s; is 0 then it is m; x==1b;,

and if s; is -1 then it is m;.x < b;.

This makes the first inequality use <.
LinearProgramming[{2, 3}, {{1, 5}, {1, -1}, {1, 0}}, {{10, -1}, {2, 1}, {1, 1}}]
{2, 0}

In LinearProgramming[c, m, b, [], you can make [ be a list of pairs {{;, w1}, {{>, u»}, ...} represent-

ing lower and upper bounds on the x;.

In doing large linear programming problems, it is often convenient to give the matrix m as a

SparseArray object.

Controlling the Precision of Results

In doing numerical operations like NDSolve and NMinimize, Mathematica by default uses
machine numbers. But by setting the option wWorkingPrecision ->n you can tell it to use

arbitrary-precision numbers with n-digit precision.

This does a machine-precision computation of a numerical integral.
NIntegrate[Sin[Sin[x]], {x, 0, 1}]

0.430606
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This does the computation with 30-digit arbitrary-precision numbers.
NIntegrate[Sin[Sin[x]], {x, O, 1}, WorkingPrecision -> 30]
0.430606103120690604912377355248

When you give a setting for WworkingPrecision, this typically defines an upper limit on the
precision of the results from a computation. But within this constraint you can tell Mathematica
how much precision and accuracy you want it to try to get. You should realize that for many
kinds of numerical operations, increasing precision and accuracy goals by only a few digits can
greatly increase the computation time required. Nevertheless, there are many cases where it is
important to ensure that high precision and accuracy are obtained.

WorkingPrecision the number of digits to use for computations
PrecisionGoal the number of digits of precision to try to get
AccuracyGoal the number of digits of accuracy to try to get

Options for controlling precision and accuracy.

This gives a result to 25-digit precision.
NIntegrate[Sin[Sin[x]], {x, O, 1}, WorkingPrecision -> 30, PrecisionGoal -> 25]

0.430606103120690604912377355248

50-digit precision cannot be achieved with 30-digit working precision.

NIntegrate[Sin[Sin[x]], {x, O, 1},
WorkingPrecision -> 30, PrecisionGoal -> 50, MaxRecursion - 20]

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small.

Nintegrate::eincr:
The global error of the strategy GlobalAdaptive has increased more than 400 times. The global error is

expected to decrease monotonically after a number of integrand evaluations. Suspect one

of the following: the difference between the values of PrecisionGoal and WorkingPrecision

is too small; the integrand is highly oscillatory or it is not a (piecewise) smooth function;

or the true value of the integral is 0. Increasing the value of the GlobalAdaptive option

MaxErrorincreases might lead to a convergent numerical integration. NIntegrate obtained

0.43060610312069060491237735524846578643219268469700477957788899453862440935".
086147°79.99999999999999 and

5.03891680239785224285840796406833800958006097055414813173023183082827274593".
35312°79.99999999999999*A-40 for the integral and error estimates.

0.430606103120690604912377355248
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Given a particular setting for workingPrecision, each of the functions for numerical operations
in Mathematica uses certain default settings for PrecisionGoal and AccuracyGoal. Typical is
the case of NDSolve, in which these default settings are equal to half the settings given for

WorkingPrecision.

The precision and accuracy goals normally apply both to the final results returned, and to
various norms or error estimates for them. Functions for numerical operations in Mathematica
typically try to refine their results until either the specified precision goal or accuracy goal is
reached. If the setting for either of these goals is Infinity, then only the other goal is consid-
ered.

In doing ordinary numerical evaluation with N[expr, n], Mathematica automatically adjusts its
internal computations to achieve n-digit precision in the result. But in doing numerical opera-
tions on functions, it is in practice usually necessary to specify WorkingPrecision and

PrecisionGoal more explicitly.

Monitoring and Selecting Algorithms

Functions in Mathematica are carefully set up so that you normally do not have to know how
they work inside. But particularly for numerical functions that use iterative algorithms, it is

sometimes useful to be able to monitor the internal progress of these algorithms.

StepMonitor an expression to evaluate whenever a successful step is
taken
EvaluationMonitor an expression to evaluate whenever functions from the

input are evaluated

Options for monitoring progress of numerical functions.

This prints the value of x every time a step is taken.

FindRoot [Cos[x] == x, {x, 1}, StepMonitor :> Print[x]]
0.750364
0.739113
0.739085

0.739085

{x-0.739085}
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Note the importance of using option : > expr rather than option -> expr. You need a delayed rule :>
to make expr be evaluated each time it is used, rather than just when the rule is given.

Reap and Sow provide a convenient way to make a list of the steps taken.
Reap[FindRoot [Cos[x] == x, {x, 1}, StepMonitor :> Sow[x]]]
{{x-0.739085}, {{0.750364, 0.739113, 0.739085, 0.739085}}}

This counts the steps.

Block[{ct = 0}, {FindRoot[Cos[x] == x, {x, 1}, StepMonitor :> ct++], ct}]
{{x—-0.739085}, 4}

To take a successful step toward an answer, iterative numerical algorithms sometimes have to
do several evaluations of the functions they have been given. Sometimes this is because each
step requires, say, estimating a derivative from differences between function values, and some-
times it is because several attempts are needed to achieve a successful step.

This shows the successful steps taken in reaching the answer.
Reap [FindRoot [Cos [x] == x, {x, 5}, StepMonitor :> Sow[x]]]

{{x->0.739085}, {{-1., -0.0283783, 1.02962, 0.752589, 0.739125, 0.739085, 0.739085}}}

This shows every time the function was evaluated.

Reap [FindRoot [Cos [x] == x, {x, 5}, EvaluationMonitor :> Sow[x]]]

{{x-0.739085},
{{5., -55., -1., 8.71622, -0.0283783, 1.02962, 0.752589, 0.739125, 0.739085, 0.739085}}}

The pattern of evaluations done by algorithms in Mathematica can be quite complicated.

ListPlot[
Reap [NIntegrate[l / Sqrt[x], {x, -1, 0, 1}, EvaluationMonitor :> Sow[x]]][[2, 1]]]
10
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Method->Automatic pick methods automatically (default)
Method->"name" specify an explicit method to use

Method->{"name" , { "par,"->val;, ...} }

specify more details of a method

Method options.

There are often several different methods known for doing particular types of numerical compu-
tations. Typically Mathematica supports most generally successful ones that have been dis-
cussed in the literature, as well as many that have not. For any specific problem, it goes to
considerable effort to pick the best method automatically. But if you have sophisticated knowl-
edge of a problem, or are studying numerical methods for their own sake, you may find it
useful to tell Mathematica explicitly what method it should use. Function reference pages list
some of the methods built into Mathematica; others are discussed in "Numerical and Related
Functions" or in advanced documentation.

This solves a differential equation using method m, and returns the number of steps and evalua-
tions needed.

try[m_] := Block[{s = e = 0}, NDSolve[{y''[x] +Sin[y[x]] ==0, y'[0] ==y[O0] ==1}, vy,
{x, 0, 100}, StepMonitor :> s++, EvaluationMonitor :> e++, Method -> m]; {s, e}]

With the method selected automatically, this is the number of steps and evaluations that are
needed.

try[Automatic]
(1118, 2329}

This shows what happens with several other possible methods. The Adams method that is
selected automatically is the fastest.

try /e
{"Adams", "BDF", "ExplicitRungeKutta", "ImplicitRungeKutta", "Extrapolation"}
({1118, 2329}, {2415, 2861}, {287, 4595}, {882, 13092}, {84, 4146}}

This shows what happens with the explicit Runge-Kutta method when the difference order
parameter is changed.

Table[try[{"ExplicitRungeKutta", "DifferenceOrder" -> n}], {n, 4, 9}]

({3519, 14078}, {614, 4300}, {849, 6794}, {472, 4722}, {288, 3746}, {287, 4594}}
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Functions with Sensitive Dependence on Their Input

Functions that are specified by simple algebraic formulas tend to be such that when their input
is changed only slightly, their output also changes only slightly. But functions that are instead
based on executing procedures quite often show almost arbitrarily sensitive dependence on
their input. Typically the reason this happens is that the procedure "excavates" progressively
less and less significant digits in the input.

This shows successive steps in a simple iterative procedure with input 0.1111.
NestList[FractionalPart[2 #] &, 0.1111, 10]

{0.1111, 0.2222, 0.4444, 0.8888, 0.7776, 0.5552, 0.1104, 0.2208, 0.4416, 0.8832, 0.7664}

Here is the result with input 0.1112. Progressive divergence from the result with input 0.1111 is
seen.

NestList [FractionalPart[2#] &, 0.1112, 10]

{0.1112, 0.2224, 0.4448, 0.8896, 0.7792, 0.5584, 0.1168, 0.2336, 0.4672, 0.9344, 0.8688}

The action of FractionalPart[2 x] is particularly simple in terms of the binary digits of the
number x: it just drops the first one, and shifts the remaining ones to the left. After several
steps, this means that the results one gets are inevitably sensitive to digits that are far to the
right, and have an extremely small effect on the original value of x.

This shows the shifting process achieved by FractionalPart[2 x] in the first 8 binary digits
of x.

RealDigits[Take[%, 5], 2, 8, -1]

{ , 1

. 0,1,1,1,0,0;}, 0}, {{0O,0,1,1,1,0,
1, 1,0,0,0,1}, 0}, {{1,1,1,0,0,0,

{{{{(())', (i, }},, {{1, 1, 0,0,0,1,1, 1}, 0}}

If you give input only to a particular precision, you are effectively specifying only a certain
number of digits. And once all these digits have been "excavated" you can no longer get accu-
rate results, since to do so would require knowing more digits of your original input. So long as
you use arbitrary-precision numbers, Mathematica automatically keeps track of this kind of
degradation in precision, indicating a number with no remaining significant digits by 0. x 10°, as
discussed in "Arbitrary-Precision Numbers".
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Successive steps yield humbers of progressively lower precision, and eventually no precision at
all.
NestList [FractionalPart[40 #] &, N[1/9, 20], 20]

{0.11111111111111111111, 0.4444444444444444444, 0.77777777777777778, 0.1111111111111111,
0.44444444444444, 0.777777777778, 0.11111111111, 0.444444444, 0.77777778, 0.111111,
0.4444, 0.778, 0.1, 0.x10", 0.x10%, 0.x10%, 0.x10%, 0.x10%, 0.x107, 0.x10%, 0.x10"}

This asks for the precision of each humber. Zero precision indicates that there are no correct
significant digits.
Map [Precision, %]

{20., 19., 17.641, 15.1938, 14.1938, 12.8348, 10.3876, 9.38764,
8.02862, 5.58146, 4.58146, 3.22244, 0.77528, 0., 0., 0., 0., 0., 0., 0., 0.}

This shows that the exact result is a periodic sequence.
NestList[FractionalPart[40#] &, 1/9, 10]

It is important to realize that if you use approximate numbers of any kind, then in an example
like the one above you will always eventually run out of precision. But so long as you use arbi-
trary-precision numbers, Mathematica will explicitly show you any decrease in precision that is
occurring. However, if you use machine-precision numbers, then Mathematica will not keep

track of precision, and you cannot tell when your results become meaningless.

If you use machine-precision humbers, Mathematica will no longer keep track of any degrada-
tion in precision.

NestList [FractionalPart[40 #] &, N[1 /9], 20]

{0.111111, 0.444444, 0.777778, 0.111111, 0.444444, 0.777778, 0.111111, 0.444445, 0.77781,

0.112405, 0.496185, 0.847383, 0.89534, 0.813599, 0.543945, 0.757813, 0.3125, 0.5, 0., 0., 0.}
By iterating the operation FractionalPart[2 x] you extract successive binary digits in what-
ever number you start with. And if these digits are apparently random—as in a number like 7—
then the results will be correspondingly random. But if the digits have a simple pattern—as in

any rational number—then the results you get will be correspondingly simple.

By iterating an operation such as FractionalPart[3 /2 x] it turns out however to be possible
to get seemingly random sequences even from very simple input. This is an example of a very
general phenomenon first identified by Stephen Wolfram in the mid-1980s, which has nothing

directly to do with sensitive dependence on input.
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This generates a seemingly random sequence, even starting from simple input.
NestList [FractionalPart[3/2#] &, 1, 15]
1 3 1 3 9 27 81 243 217 651 1953 1763 5289 15867 14833

{ll A A e A A A A A A A S

’ ’ r ’ ’ r r ’ r ’
2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

J

After the values have been computed, one can safely find numerical approximations to them.
N[%]

{1., 0.5, 0.75, 0.125, 0.1875, 0.28125, 0.421875, 0.632813, 0.949219,
0.423828, 0.635742, 0.953613, 0.43042, 0.64563, 0.968445, 0.452667}

Here are the last 5 results after 1000 iterations, computed using exact numbers.
Take[N[NestList [FractionalPart[3 /2#] &, 1, 1000]], -5]
{0.0218439, 0.0327659, 0.0491488, 0.0737233, 0.110585}

Using machine-precision numbers gives completely incorrect results.
Take[NestList [FractionalPart[3 /2#] &, 1., 1000], -5]
{0.670664, 0.0059966, 0.0089949, 0.0134924, 0.0202385}

Many kinds of iterative procedures yield functions that depend sensitively on their input. Such
functions also arise when one looks at solutions to differential equations. In effect, varying the
independent parameter in the differential equation is a continuous analog of going from one

step to the next in an iterative procedure.

This finds a solution to the Duffing equation with initial condition 1.

NDSolve[{x''[t] +0.15x"'[t] -x[t] +x[t] "3 ==0.3Cos[t],
x[0] == -1, x'[0] == 1}, x, {t, O, 50}]
{{x - InterpolatingFunction[{{0., 50.}}, <>]}}

Here is a plot of the solution.
Plot [Evaluate[x[t] /. %], {t, 0, 50}]

15

;z //\\\ - & /4/0\/\50
By Wv/ W

-15
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Here is the same equation with initial condition 1.001.

NDSolve[{x"''[t] +0.15x'[t] -x[t] +x[t] "3 == 0.3 Cos[t],
x[0] == -1, x'[0] == 1.001}, x, {t, O, 50}]

{{x > InterpolatingFunction[{{0., 50.}}, <>]}}

The solution progressively diverges from the one shown above.
Plot[Evaluate[x[t] /. %], {t, 0, 50}]

15
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Numerical Operations on Data

Basic Statistics

Mean [list] mean (average)
Median [list] median (central value)
Max [list] maximum value
Variance [list] variance
StandardDeviation [list] standard deviation
Quantile [list,q] g™ quantile

Total [list] total

Basic descriptive statistics operations.

Given a list with n elements x;, the mean Mean [list] is defined to be u(x) =x=>x;/n.

The variance variance [list] is defined to be var(x) = o%(x) = J(x; —,u(x))z/(n— 1), for real data. (For

complex data var (x) = 02(x) = S(x — u(x) (5 = g0/ (n = 1).)

The standard deviation standardDeviation [list] is defined to be o(x) = V var(x) .

If the elements in lisr are thought of as being selected at random according to some probability
distribution, then the mean gives an estimate of where the center of the distribution is located,

while the standard deviation gives an estimate of how wide the dispersion in the distribution is.

The median Median [list] effectively gives the value at the halfway point in the sorted version of
list. It is often considered a more robust measure of the center of a distribution than the mean,

since it depends less on outlying values.

The ¢™ quantile Quantile [list, q] effectively gives the value that is ¢ of the way through the

sorted version of lisz.

For a list of length n, Mathematica defines Quantile [list, q] to be s[[Ceiling[ng]]], where s

is Sort [list, Less].
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There are, however, about ten other definitions of quantile in use, all potentially giving slightly
different results. Mathematica covers the common cases by introducing four quantile parame-
ters in the form Quantile [list, g, {{a, b}, {c, d}}]. The parameters a and b in effect define
where in the list should be considered a fraction ¢ of the way through. If this corresponds to an
integer position, then the element at that position is taken to be the ¢ quantile. If it is not an
integer position, then a linear combination of the elements on either side is used, as specified

by ¢ and d.

The position in a sorted list s for the ¢ quantile is taken to be k=a+ (n+b)q. If k is an integer,

then the quantile is s;,. Otherwise, it is sy + (spq — si)) (¢ + d (k — |k])), with the indices taken to be 1

or n if they are out of range.

{{0,0},{1,0}} inverse empirical CDF (default)
{{0,0},{0,1}} linear interpolation (California method)
{{1/2,0},{0,0}} element numbered closest to gn
{{1/2,0},{0,1}} linear interpolation (hydrologist method)
{{0,1},{0,1}} mean-based estimate (Weibull method)
{{1,-1},{0,1}} mode-based estimate
{{1/3,1/3},{0,1}} median-based estimate
{{3/8,1/4},{0,1}} normal distribution estimate

Common choices for quantile parameters.

Whenever d =0, the value of the qth quantile is always equal to some actual element in list, soO

t!

that the result changes discontinuously as ¢ varies. For d =1, the qh quantile interpolates lin-

early between successive elements in list. Median is defined to use such an interpolation.

Note that Quantile [list, ¢q] yields quartiles when ¢=m/4 and percentiles when g =m/100.

Mean [ {x;,Xx2,...}] the mean of the x;
Mean [ {{xi,Yis---}s{X2, Y27} r--}] a list of the means of the x;, y;, ...
Handling multidimensional data.

Sometimes each item in your data may involve a list of values. The basic statistics functions in

Mathematica automatically apply to all corresponding elements in these lists.
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This separately finds the mean of each "column" of data.
Mean[{{x1, y1}, {x2, y2}, {x3, y3}}]

1 1
{7(xl+x2+x3),7(y1+y2+y3)}
3 3

Note that you can extract the elements in the it "column" of a multidimensional list using

list[ [Al1, i]].

Descriptive Statistics

Descriptive statistics refers to properties of distributions, such as location, dispersion, and
shape. The functions described here compute descriptive statistics of lists of data. You can
calculate some of the standard descriptive statistics for various known distributions by using the
functions described in "Continuous Distributions" and "Discrete Distributions".

The statistics are calculated assuming that each value of data x; has probability equal to %,

where n is the number of elements in the data.

Mean [data] average value % DiXi

Median [data] median (central value)

Commonest [data] list of the elements with highest frequency

1

GeometricMean [data] geometric mean ([x;)"

HarmonicMean [data] harmonic mean n/z, xl

RootMeanSquare [data] root mean square _ | %Z,-xf

TrimmedMean [data, f] mean of remaining entries, when a fraction f is removed
from each end of the sorted list of data

TrimmedMean [data, { fi,f>}] mean of remaining entries, when fractions f; and f, are
dropped from each end of the sorted data

Quantile [data,q] qth quantile

Quartiles [data] list of the 41”1, %th, ?fh quantiles of the elements in list

Location statistics.
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Location statistics describe where the data are located. The most common functions include
measures of central tendency like the mean, median, and mode. Quantile [data, q] gives the
location before which (100 ¢) percent of the data lie. In other words, Quantile gives a value z
such that the probability that (x; <z) is less than or equal to ¢ and the probability that (x;<z) is

greater than or equal to gq.

Here is a dataset.
data = {6.5, 3.8, 6.6, 5.7, 6.0, 6.4, 5.3}
{6.5, 3.8, 6.6, 5.7, 6., 6.4, 5.3}

This finds the mean and median of the data.
{Mean[data], Median[data]}
(5.75714, 6.}

This is the mean when the smallest entry in the list is excluded. TrimmedMean allows you to
describe the data with removed outliers.

1
TrimmedMean[data, {—, 0}]
7

6.08333

Variance [data] unbiased estimate of variance, ﬁ > — Y)z
StandardDeviation [data] unbiased estimate of standard deviation

MeanDeviation [data] mean absolute deviation, ;—Zi X; — f|

MedianDeviation [data] median absolute deviation, median of | x; — median | values
InterquartileRange [data] difference between the first and third quartiles
QuartileDeviation [data] half the interquartile range

Dispersion statistics.

Dispersion statistics summarize the scatter or spread of the data. Most of these functions
describe deviation from a particular location. For instance, variance is a measure of deviation

from the mean, and standard deviation is just the square root of the variance.

This gives an unbiased estimate for the variance of the data with n — 1 as the divisor.
Variance[data]

0.962857
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This compares three types of deviation.
{StandardDeviation[data], MeanDeviation[data], MedianDeviation[data]}

{0.981253, 0.706122, 0.5}

Covariance [vi,V;] covariance coefficient between lists v; and v,
Covariance [m] covariance matrix for the matrix m
Covariance [my,m;] covariance matrix for the matrices m; and m,
Correlation [v;,v;] correlation coefficient between lists v and v,
Correlation [m] correlation matrix for the matrix m
Correlation [my,m;] correlation matrix for the matrices m; and m,

Covariance and correlation statistics.

Covariance is the multivariate extension of variance. For two vectors of equal length, the covari-
ance is a number. For a single matrix m, the i, /" element of the covariance matrix is the
covariance between the it and /™ columns of m. For two matrices m, and m,, the i, j element

of the covariance matrix is the covariance between the it" column of m; and the /™ column of m,.

While covariance measures dispersion, correlation measures association. The correlation
between two vectors is equivalent to the covariance between the vectors divided by the stan-
dard deviations of the vectors. Likewise, the elements of a correlation matrix are equivalent to
the elements of the corresponding covariance matrix scaled by the appropriate column standard

deviations.

This gives the covariance between data and a random vector.
Covariance[data, RandomReal[1l, Length[data]]]

0.0258505

Here is a random matrix.

m = RandomReal[10, {20, 2}]

{{8.01573, 5.3642}, {6.70564, 0.352495}, {2.17328, 7.48353}, {1.33259, 3.27026},
{9.54907, 8.35172}, {1.56138, 9.4684}, {5.76737, 4.42373}, {8.65789, 6.66041},
{6.65159, 7.40813}, {3.38061, 6.22431}, {0.269599, 9.76406}, {5.23322, 4.58995},

{3.3881, 1.66902}, {5.66131, 6.06514}, {7.50919, 8.17705}, {5.92976, 0.803385},
{9.96, 1.18177}, {2.14364, 5.8279}, {8.13317, 8.79128}, {3.51722, 3.08246}}

This is the correlation matrix for the matrix m.
Correlation[m]

{{1., -0.132314}, {-0.132314, 1.}}
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This is the covariance matrix.
Covariance[m]

{{8.48155, -1.13411}, {-1.13411, 8.66215}}

Scaling the covariance matrix terms by the appropriate standard deviations gives the correla-
tion matrix.
With[{sd = StandardDeviation[m]},
Transpose [Transpose[% / sd] / sd]]
{{1., -0.132314}, {-0.132314, 1.}}

CentralMoment [data,r] " central moment % i —x)
Skewness [data] coefficient of skewness
Kurtosis [data] kurtosis coefficient
QuartileSkewness [data] quartile skewness coefficient

Shape statistics.

You can get some information about the shape of a distribution using shape statistics. Skew-
ness describes the amount of asymmetry. Kurtosis measures the concentration of data around
the peak and in the tails versus the concentration in the flanks.

Skewness is calculated by dividing the third central moment by the cube of the population
standard deviation. Kurtosis is calculated by dividing the fourth central moment by the square
of the population variance of the data, equivalent to CentralMoment [data, 2]. (The population
variance is the second central moment, and the population standard deviation is its square
root.)

QuartileSkewness is calculated from the quartiles of data. It is equivalent to

(g1 —-2¢>+q3)/ (g5 — q1), Where q;, ¢», and ¢; are the first, second, and third quartiles respectively.

Here is the second central moment of the data.
CentralMoment [data, 2]
0.825306

A negative value for skewness indicates that the distribution underlying the data has a long left-
sided tail.

Skewness [data]

-1.20108
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ExpectedValue [ f, list] expected value of the pure function f with respect to the
values in list

ExpectedValue [ f [x] ,list, x] expected value of the function f of x with respect to the
values of list

Expected values.
The expected value of a function f is l—Z’:If(x,») for the list of values x;, x5, ..., x,. Many descrip-

tive statistics are expected values. For instance, the mean is the expected value of x, and the

M central moment is the expected value of (x—x)" where x is the mean of the x;.

Here is the expected value of the Log of the data.
ExpectedValue[Log, data]
1.73573

Discrete Distributions

The functions described here are among the most commonly used discrete statistical distribu-
tions. You can compute their densities, means, variances, and other related properties. The
distributions themselves are represented in the symbolic form name [ param,, param,, ...]. Func-
tions such as Mean, which give properties of statistical distributions, take the symbolic represen-
tation of the distribution as an argument. "Continuous Distributions" describes many continuous

statistical distributions.

BernoulliDistribution [p] Bernoulli distribution with mean p
BetaBinomialDistribution [ binomial distribution where the success probability is a
@, B,n] BetaDistribution [@, ] random variable

BetaNegativeBinomialDistribution [a,,n]
negative binomial distribution where the success probabil -
ity is a BetaDistribution [@, B8] random variable

BinomialDistribution[n,p] binomial distribution for the number of successes that
occur in n trials, where the probability of success in a trial
is p

DiscreteUniformDistribution [ {inin,imax} ]
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discrete uniform distribution over the integers from i,,;, to

lmax

GeometricDistribution [p] geometric distribution for the number of trials before the
first success, where the probability of success in a trial is p

HypergeometricDistribution [n, g, P ]

hypergeometric distribution for the number of successes
out of a sample of size n, from a population of size n,,,

containing ng,.. successes
LogSeriesDistribution [6] logarithmic series distribution with parameter 6
NegativeBinomialDistribution [n,p]

negative binomial distribution with parameters n and p
PoissonDistribution [u] Poisson distribution with mean

ZipfDistribution [p] Zipf distribution with parameter p
Discrete statistical distributions.

Most of the common discrete statistical distributions can be understood by considering a

sequence of trials, each with two possible outcomes, for example, success and failure.

The Bernoulli distribution BernoulliDistribution [p] is the probability distribution for a single
trial in which success, corresponding to value 1, occurs with probability p, and failure, corre-

sponding to value 0, occurs with probability 1 - p.

The binomial distribution BinomialDistribution[n, p] is the distribution of the number of

successes that occur in n independent trials, where the probability of success in each trial is p.

The negative binomial distribution NegativeBinomialDistribution[n, p] for positive integer n
is the distribution of the number of failures that occur in a sequence of trials before n successes
have occurred, where the probability of success in each trial is p. The distribution is defined for
any positive n, though the interpretation of n as the number of successes and p as the success

probability no longer holds if n is not an integer.

The beta binomial distribution BetaBinomialDistribution[a, B8, n] iS @ mixture of binomial
and beta distributions. A BetaBinomialDistribution[@, 8, n] random variable follows a
BinomialDistribution[n, p] distribution, where the success probability p is itself a random
variable following the beta distribution BetabDistribution [a, B]. The beta negative binomial
distribution BetaNegativeBinomialDistribution[a, B, n] is a similar mixture of the beta and

negative binomial distributions.

The geometric distribution GeometricDistribution[p] is the distribution of the total number

of trials before the first success occurs, where the probability of success in each trial is p.
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The hypergeometric distribution HypergeometricDistribution [n, nge, no] iS USed in place of
the binomial distribution for experiments in which the » trials correspond to sampling without

replacement from a population of size n,, with n,.. potential successes.

The discrete uniform distribution DiscreteUniformDistribution [ {iin, imex}] represents an

experiment with multiple equally probable outcomes represented by integers i,;, through i,,.

The Poisson distribution PoissonDistribution [u] describes the number of events that occur in

a given time period where u is the average number of events per period.

The terms in the series expansion of log (1 — ) about §=0 are proportional to the probabilities of

a discrete random variable following the logarithmic series distribution

LogSeriesDistribution [6]. The distribution of the number of items of a product purchased by

a buyer in a specified interval is sometimes modeled by this distribution.

The Zipf distribution zipfDistribution [p], sometimes referred to as the zeta distribution, was

first used in linguistics and its use has been extended to model rare events.

PDF [dist, x]

CDF [dist , x]

InverseCDF [dist,q]
Quantile [dist, q]

Mean [dist]

Variance [dist]
StandardDeviation [dist]
Skewness [dist]

Kurtosis [dist]
CharacteristicFunction [dist,t]
ExpectedvValue [ f, dist]
ExpectedvValue [ f[x] ,dist, x]
Median [dist]

Quartiles [dist]

InterquartileRange [dist]

QuartileDeviation [dist]

probability mass function at x

cumulative distribution function at x

the largest integer x such that CDF [dist, x] is at most ¢

g™ quantile

mean

variance

standard deviation

coefficient of skewness

coefficient of kurtosis

characteristic function ¢(r)

expected value of the pure function f in dist
expected value of f[x] for x in dist

median

list of the 41”‘, %th, Zth quantiles for dist
difference between the first and third quartiles

half the interquartile range
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QuartileSkewness [dist] quartile-based skewness measure
RandomInteger [dist] pseudorandom number with specified distribution
RandomInteger [dist,dims] pseudorandom array with dimensionality dims, and ele-

ments from the specified distribution

Functions of statistical distributions.

Distributions are represented in symbolic form. PDF [dist, x] evaluates the mass function at x if x
is @ numerical value, and otherwise leaves the function in symbolic form whenever possible.
Similarly, CDF [dist, x] gives the cumulative distribution and Mean [dist] gives the mean of the
specified distribution. For a more complete description of the various functions of a statistical

distribution, see the description of their continuous analogues in "Continuous Distributions".

Here is a symbolic representation of the binomial distribution for 34 trials, each having probabil-
ity 0.3 of success.
bdist = BinomialDistribution[34, 0.3]

BinomialDistribution[34, 0.3]

This is the mean of the distribution.
Mean [bdist]
10.2

You can get the expression for the mean by using symbolic variables as arguments.
Mean[BinomialDistribution[n, p]]

np

Here is the 50% quantile, which is equal to the median.
Quantile[bdist, 0.5]
10

This gives the expected value of x> with respect to the binomial distribution.
ExpectedValue[x"3, bdist, x]

1282.55

The elements of this matrix are pseudorandom numbers from the binomial distribution.
RandomInteger [bdist, {2, 3}]
{{10, 7, 9}, {12, 10, 11}}
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Continuous Distributions

The functions described here are among the most commonly used continuous statistical distribu-
tions. You can compute their densities, means, variances, and other related properties. The
distributions themselves are represented in the symbolic form name [ param,, param,, ...]. Func-
tions such as Mean, which give properties of statistical distributions, take the symbolic represen-
tation of the distribution as an argument. "Discrete Distributions" describes many discrete

statistical distributions.

NormalDistribution [u, o] normal (Gaussian) distribution with mean y and standard
deviation o

HalfNormalDistribution [6] half-normal distribution with scale inversely proportional to
parameter 6

LogNormalDistribution [y, 0] lognormal distribution based on a normal distribution with
mean u and standard deviation o

InverseGaussianDistribution | inverse Gaussian distribution with mean p and scale A

oAl

Distributions related to the normal distribution.

The lognormal distribution LogNormalDistribution [u, o] is the distribution followed by the
exponential of a normally distributed random variable. This distribution arises when many
independent random variables are combined in a multiplicative fashion. The half-normal distribu-
tion HalfNormalDistribution [6] is proportional to the distribution

NormalDistribution[0, 1/ (§Sqrt[2/x])] limited to the domain [0, ).

The inverse Gaussian distribution InverseGaussianDistribution[u, A], sometimes called the
Wald distribution, is the distribution of first passage times in Brownian motion with positive
drift.

ChiSquareDistribution [v] x? distribution with v degrees of freedom
InverseChiSquareDistribution]| inverse y? distribution with v degrees of freedom

v]
FRatioDistribution [n,m] F-ratio distribution with n numerator and m denominator

degrees of freedom

StudentTDistribution [v] Student ¢ distribution with v degrees of freedom
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NoncentralChiSquareDistribu: [ noncentral y? distribution with v degrees of freedom and
tion noncentrality parameter A
VyA]

NoncentralStudentTDistribut: [ noncentral Student ¢ distribution with v degrees of freedom
ion and noncentrality parameter ¢
V6]

NoncentralFRatioDistribution| noncentral F-ratio distribution with n numerator degrees of
n,m,A] freedom and m denominator degrees of freedom and

numerator noncentrality parameter A
Distributions related to normally distributed samples.
If X;,..., X, are independent normal random variables with unit variance and mean zero, then
Y, X? has a y? distribution with v degrees of freedom. If a normal variable is standardized by

subtracting its mean and dividing by its standard deviation, then the sum of squares of such

quantities follows this distribution. The y? distribution is most typically used when describing

the variance of normal samples.

If Y follows a yx? distribution with v degrees of freedom, 1/Y follows the inverse 4? distribution
InverseChiSquareDistribution[v]. A scaled inverse 4? distribution with v degrees of freedom
and scale ¢ can be given as InverseChiSquareDistribution[v, £]. Inverse y? distributions are
commonly used as prior distributions for the variance in Bayesian analysis of normally dis-

tributed samples.

A variable that has a Student ¢ distribution can also be written as a function of normal random

variables. Let X and Z be independent random variables, where X is a standard normal distribu-
tion and Z is a x? variable with v degrees of freedom. In this case, X/ Z/v has a r distribution

with v degrees of freedom. The Student r distribution is symmetric about the vertical axis, and
characterizes the ratio of a normal variable to its standard deviation. Location and scale parame-
ters can be included as u and o in studentTDistribution[u, o, v]. When v=1, the ¢ distribu-
tion is the same as the Cauchy distribution.

The F-ratio distribution is the distribution of the ratio of two independent y? variables divided by
their respective degrees of freedom. It is commonly used when comparing the variances of two

populations in hypothesis testing.

Distributions that are derived from normal distributions with nonzero means are called noncen-

tral distributions.
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The sum of the squares of v normally distributed random variables with variance ¢?>=1 and

nonzero means follows a noncentral y* distribution NoncentralChiSquareDistribution[v, A].
The noncentrality parameter A is the sum of the squares of the means of the random variables

in the sum. Note that in various places in the literature, /2 or VA is used as the noncentrality

parameter.

The noncentral Student t distribution NoncentralStudentTDistribution [v, §] describes the
ratio X/W where y2 is a central y?> random variable with v degrees of freedom, and X is an
independent normally distributed random variable with variance ¢? =1 and mean 6.

The noncentral F-ratio distribution NoncentralFRatioDistribution[n, m, A] is the distribution
of the ratio of %Xﬁ(k) to %Xﬁ,, where x2(1) is a noncentral x> random variable with noncentrality

parameter A and n; degrees of freedom and x2, is a central x> random variable with m degrees of

freedom.

TriangularDistribution [{a,b}] symmetric triangular distribution on the interval {a, b}

TriangularDistribution [{a,b},c] triangular distribution on the interval {a, b} with maxi-
mum at ¢

UniformDistribution [ {min,max} ] uniform distribution on the interval {min, max}
Piecewise linear distributions.

The triangular distribution TriangularDistribution[{a, b}, c¢] is a triangular distribution for

a<X<b with maximum probability at c and a<c<b. If ¢ is %,
TriangularDistribution [{a, b}, c] is the symmetric triangular distribution

TriangularDistribution [{a, b}].

The uniform distribution UniformDistribution [{min, max}], commonly referred to as the
rectangular distribution, characterizes a random variable whose value is everywhere equally
likely. An example of a uniformly distributed random variable is the location of a point chosen

randomly on a line from min to max.

BetaDistribution [a, ] continuous beta distribution with shape parameters @ and g8

CauchyDistribution [a,b] Cauchy distribution with location parameter a and scale
parameter b
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ChiDistribution [v] x distribution with v degrees of freedom

ExponentialDistribution [A] exponential distribution with scale inversely proportional to
parameter A

ExtremeValueDistribution [«a, (] extreme maximum value (Fisher-Tippett) distribution with
location parameter a and scale parameter g

GammaDistribution [e, ] gamma distribution with shape parameter @ and scale
parameter 8

GumbelDistribution [a, (] Gumbel minimum extreme value distribution with location
parameter @ and scale parameter g

InverseGammaDistribution [a, (] inverse gamma distribution with shape parameter a and
scale parameter g

LaplaceDistribution [y, ] Laplace (double exponential) distribution with mean u and
scale parameter g8

LevyDistribution [y, 0] Lévy distribution with location parameter u and dispersion
parameter o

LogisticDistribution [y, ] logistic distribution with mean u and scale parameter

MaxwellDistribution [07] Maxwell (Maxwell-Boltzmann) distribution with scale
parameter o

ParetoDistribution [k,a] Pareto distribution with minimum value parameter k and
shape parameter «

RayleighDistribution[o] Rayleigh distribution with scale parameter o

WeibullDistribution [, 8] Weibull distribution with shape parameter @ and scale

parameter
Other continuous statistical distributions.

If X is uniformly distributed on[-x, =], then the random variable tan(X) follows a Cauchy distribu-

tion cauchyDistribution [a, b], with a=0and b=1.

When a =n/2 and A =2, the gamma distribution GammaDistribution[a, A] describes the distribu-
tion of a sum of squares of n-unit normal random variables. This form of the gamma distribu-
tion is called a y? distribution with v degrees of freedom. When a =1, the gamma distribution
takes on the form of the exponential distribution ExponentialDistribution[A], often used in

describing the waiting time between events.

If a random variable X follows the gamma distribution GammaDistribution[a, B8], 1/X follows
the inverse gamma distribution InverseGammaDistribution[a, 1/ B]. If a random variable X
follows InverseGammaDistribution[1/2, 0/2], X+u follows a Lévy distribution

LevyDistribution [y, o].
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When X, and X, have independent gamma distributions with equal scale parameters, the ran-

dom variable % follows the beta distribution BetaDistribution [a@, B8], where a« and B are
the shape parameters of the gamma variables.

The y distribution chibistribution [v] is followed by the square root of a x> random variable.

For n=1, the y distribution is identical to HalfNormalDistribution [#] with 8= _| g . For n=2,

the y distribution is identical to the Rayleigh distribution RayleighDistribution[o] with o=1.
For n=3, the y distribution is identical to the Maxwell-Boltzmann distribution

MaxwellDistribution [o] with o =1.

The Laplace distribution LaplaceDistribution [y, B] is the distribution of the difference of two
independent random variables with identical exponential distributions. The /logistic distribution
LogisticDistribution[u, B] is frequently used in place of the normal distribution when a

distribution with longer tails is desired.

The Pareto distribution ParetoDistribution [k, @] may be used to describe income, with k

representing the minimum income possible.

The Weibull distribution WeibullDistribution[a, B] is commonly used in engineering to
describe the lifetime of an object. The extreme value distribution
ExtremeValueDistribution [a, B] is the limiting distribution for the largest values in large
samples drawn from a variety of distributions, including the normal distribution. The limiting
distribution for the smallest values in such samples is the Gumbel distribution,
GumbelDistribution[a, B]. The names "extreme value" and "Gumbel distribution" are some-
times used interchangeably because the distributions of the largest and smallest extreme val-
ues are related by a linear change of variable. The extreme value distribution is also sometimes
referred to as the log-Weibull distribution because of logarithmic relationships between an
extreme value-distributed random variable and a properly shifted and scaled Weibull-distributed

random variable.

PDF [dist, x] probability density function at x
CDF [dist , x] cumulative distribution function at x

InverseCDF [dist,q] the value of x such that CDF [dist, x] equals ¢
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Quantile [dist,q] g™ quantile

Mean [dist] mean

Variance [dist] variance

StandardDeviation [dist] standard deviation

Skewness [dist] coefficient of skewness

Kurtosis [dist] coefficient of kurtosis
CharacteristicFunction [dist,t] characteristic function ¢(r)

ExpectedValue [ f,dist] expected value of the pure function f in dist
Expectedvalue [f[x] ,dist, x] expected value of f[x] for x in dist

Median [dist] median

Quartiles [dist] list of the A]—‘th, ;—th, %th quantiles for dist
InterquartileRange [dist] difference between the first and third quartiles
QuartileDeviation [dist] half the interquartile range

QuartileSkewness [dist] quartile-based skewness measure

RandomReal [dist] pseudorandom number with specified distribution
RandomReal [dist,dims] pseudorandom array with dimensionality dims, and ele-

ments from the specified distribution
Functions of statistical distributions.
The cumulative distribution function (cdf) at x is given by the integral of the probability density
function (pdf) up to x. The pdf can therefore be obtained by differentiating the cdf (perhaps in a
generalized sense). In this package the distributions are represented in symbolic form.

PDF [dist, x] evaluates the density at x if x is a numerical value, and otherwise leaves the func-

tion in symbolic form. Similarly, CDF [dist, x] gives the cumulative distribution.

The inverse cdf InverseCDF [dist, q] gives the value of x at which CDF [dist, x] reaches ¢g. The
median is given by InverseCDF [dist, 1/ 2]. Quartiles, deciles and percentiles are particular
values of the inverse cdf. Quartile skewness is equivalent to (¢q; —2¢> + 43)/(g3 — q1), where ¢, ¢»
and ¢; are the first, second, and third quartiles, respectively. Inverse cdfs are used in construct-
ing confidence intervals for statistical parameters. InverseCDF [dist, gq] and Quantile [dist, q]

are equivalent for continuous distributions.

The mean Mean [dist] is the expectation of the random variable distributed according to dist and
is usually denoted by u. The mean is given by yfxf(x)dx, where f(x) is the pdf of the distribu-
tion. The variance variance [dist] is given by f(x—u)z f(x)dx. The square root of the variance is

called the standard deviation, and is usually denoted by o
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The skewness [dist] and Kurtosis [dist] functions give shape statistics summarizing the asymme-

try and the peakedness of a distribution, respectively. Skewness is given by %f(x—uff(x)dx

and kurtosis is given by (% [t —w* f)dx.

The characteristic function CharacteristicFunction [dist, t] iS given by ¢(z)=ff(x) exp(itx)dx.
In the discrete case, ¢ (r)= Y f(x)exp(itx). Each distribution has a unique characteristic function,

which is sometimes used instead of the pdf to define a distribution.

The expected value Expectedvalue [g, dist] of a function g is given by ff(x)g(x)dx. In the dis-

crete case, the expected value of g is given by Y f(x) g(x). ExpectedvValue [g[x], dist, x] iS equiva-

lent to Expectedvalue [g, dist].

RandomReal [dist] gives pseudorandom numbers from the specified distribution.

This gives a symbolic representation of the gamma distribution with @ =3 and f=1.
gdist = GammaDistribution[3, 1]

GammaDistribution[3, 1]

Here is the cumulative distribution function evaluated at 10.
CDF [gdist, 10]

GammaRegularized[3, 0, 10]

This is the cumulative distribution function. It is given in terms of the built-in function
GammaRegularized.

cdfunction = CDF[gdist, x]

GammaRegularized[3, 0, x]

Here is a plot of the cumulative distribution function.
Plot[cdfunction, {x, 0, 10}]

10 -
0.8}
06}

0.4

+ /
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This is a pseudorandom array with elements distributed according to the gamma distribution.

RandomReal [gdist, 5]
{1.46446, 8.56359, 2.70647, 1.97748, 2.97108}

Partitioning Data into Clusters

Cluster analysis is an unsupervised learning technique used for classification of data. Data
elements are partitioned into groups called clusters that represent proximate collections of data
elements based on a distance or dissimilarity function. Identical element pairs have zero dis-

tance or dissimilarity, and all others have positive distance or dissimilarity.

FindClusters [data] partition data into lists of similar elements

FindClusters [data,n] partition data into exactly n lists of similar elements

General clustering function.

The data argument of FindClusters can be a list of data elements or rules indexing elements

and labels.
{e1,€3,...} data specified as a list of data elements ¢;
{e1=vy,e0ov0, ...} data specified as a list of rules between data elements ¢;
and labels v;
{e1,e0,...}=>{vi,v2,...} data specified as a rule mapping data elements ¢; to labels

Vi

Ways of specifying data in FindClusters.
The data elements ¢; can be numeric lists, matrices, tensors, lists of True and False elements,

or lists of strings. All data elements ¢; must have the same dimensions.

Here is a list of numbers.
data = {1.2, 9.1, 2.3, 15.4, 71.8};

FindClusters clusters the numbers based on their proximity.
FindClusters[data]
{{1.2, 2.3}, {9.1, 15.4}, {71.8}}
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The rule-based data syntax allows for clustering data elements and returning labels for those

elements.

Here two-dimensional points are clustered and labeled with their positions in the data list.

datal = {{1, 2}, {3, 7}, {0, 3}, {3, 1}};
FindClusters[datal -> Range[Length[datal]]]

({1, 3, 4}, {2}}

The rule-based data syntax can also be used to cluster data based on parts of each data entry.
For instance, you might want to cluster data in a data table while ignoring particular columns in
the table.

Here is a list of data entries.

datarecords = {{"Joe", "Smith", 158, 64.4}, {"Mary", "Davis", 137, 64.4},
{"Bob", "Lewis", 141, 62.8}, {"John", "Thompson", 235, 71.1},
{"Lewis", "Black", 225, 71.4}, {"Sally", "Jones", 168, 62.},

{"Tom", "Smith", 243, 70.9}, {"Jane", "Doe", 225, 71.4}};

This clusters the data while ignoring the first two elements in each data entry.
FindClusters[Drop[datarecords, None, {1, 2}] -» datarecords]
{{{Joe, Smith, 158, 64.4}, {Sally, Jones, 168, 62.}},

{{Mary, Davis, 137, 64.4}, {Bob, Lewis, 141, 62.8}}, {{John, Thompson, 235, 71.1},
{Lewis, Black, 225, 71.4}, {Tom, Smith, 243, 70.9}, {Jane, Doe, 225, 71.4}}}

In principle, it is possible to cluster points given in an arbitrary number of dimensions. How-
ever, it is difficult at best to visualize the clusters above two or three dimensions. To compare
optional methods in this documentation, an easily visualizable set of two-dimensional data will

be used.

The following commands define a set of 300 two-dimensional data points chosen to group into
four somewhat nebulous clusters.

GaussianRandomData[n_Integer, p_, sigma_] := Table[p + {Re[#], Im[#]} &[
RandomReal [NormalDistribution[0, sigma]] e RandemReal[{0,27}] ] ’ {n}] ;
datapairs = BlockRandom[
SeedRandom[1234];
Join[GaussianRandomData[100, {2, 1}, .3],
GaussianRandomData[100, {1, 1.5}, .2],
GaussianRandomData[100, {1, 1.1}, .4],
GaussianRandomData[100, {1.75, 1.75}, 0.1]1]11];

This clusters the data based on the proximity of points.

cl = FindClusters[datapairs];
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Here is a plot of the clusters.
ListPlot[cl]
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With the default settings, FindClusters has found the four clusters of points.

You can also direct FindClusters to find a specific number of clusters.

This shows the effect of choosing 3 clusters.

ListPlot [FindClu

sters[datapairs, 3]]
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This shows the effect of choosing 5 clusters.

ListPlot [FindClusters[datapairs, 5]]
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option name

default value

DistanceFunction

Method

Options for FindClusters.

Automatic

Automatic

the distance or dissimilarity measure to use

the clustering method to use
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Randomness is used in clustering in two different ways. Some of the methods use a random
assignment of some points to a specific number of clusters as a starting point. Randomness
may also be used to help determine what seems to be the best number of clusters to use.
Changing the random seed for generating the randomness by using
FindClusters|[{e;, e>, ...}, Method - {Automatic, "RandomSeed" ->s}] may lead to different

results for some cases.

In principle, clustering techniques can be applied to any set of data. All that is needed is a
measure of how far apart each element in the set is from other elements, that is, a function
giving the distance between elements.

FindClusters[{e;, ¢, ...}, DistanceFunction -> f] treats pairs of elements as being less

similar when their distances f[e¢;, e;] are larger. The function f can be any appropriate distance

or dissimilarity function. A dissimilarity function f satisfies the following:

flei, e)=0

f(e,-, ej) =0

flei-ej) = f(ej. i)
If the ¢; are vectors of numbers, FindClusters by default uses a squared Euclidean distance. If
the ¢; are lists of Boolean True and False (or 0 and 1) elements, FindClusters by default uses
a dissimilarity based on the normalized fraction of elements that disagree. If the ¢; are strings,

FindClusters by default uses a distance function based on the number of point changes
needed to get from one string to another.

EuclideanDistance [u,V] the Euclidean norm Y (u — v)?
SquaredEuclideanDistance [u, V] squared Euclidean norm 3(u — v)?
ManhattanDistance [u,Vv] the Manhattan distance ) |u — v|
ChessboardDistance [u, V] the chessboard or Chebyshev distance max(ju — v|)
CanberraDistance [u,V] the Canberra distance > |u — v|/(lu| + |v])
CosineDistance[u, V] the cosine distance 1 — u.v/(||ul| ||IvI])
CorrelationDistance [u,V] the correlation distance
1- (u-Mean[u]).(v-Mean[v]) /

({lu —Mean [u] | {{v - Mean [v] |})

BrayCurtisDistance [u,V] the Bray-Curtis distance Y |u — v|/>|u + v|

Distance functions for numerical data.
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This shows the clusters in datapairs found using a Manhattan distance.

ListPlot[FindClusters[datapairs, DistanceFunction -» ManhattanDistance]]
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Dissimilarities for Boolean vectors are typically calculated by comparing the elements of two
Boolean vectors u and v pairwise. It is convenient to summarize each dissimilarity function in
terms of n;;, where n;; is the number of corresponding pairs of elements in « and v, respectively,
equal to i and j. The number n; counts the pairs {i, j} in {u;, v}, {u, v2}..., with i and j being
either 0 or 1. If the Boolean values are True and False, True is equivalent to 1 and False is

equivalent to 0.

MatchingDissimilarity [u,V] simple matching (nj + ng;) / Length [u]
JaccardDissimilarity [u,v] the Jaccard dissimilarity (n1o + ng1)/(n11 + n19 + no1)
RussellRaoDissimilarity [u,V] the Russell-Rao dissimilarity (njg + ng; + ngg) / Length [u]
SokalSneathDissimilarity [u, V] the Sokal-Sneath dissimilarity 2 (ny9 + ng1)/(n11 + 2 (n10 + no1))
RogersTanimotoDissimilarity [ the Rogers-Tanimoto dissimilarity

u,v] 2 (mo + no1)/ (n11 + 2 (n1o + no1) + noo)
DiceDissimilarity[u,v] the dice dissimilarity (nyg + ng1)/(2 ny1 + nyo + noy)
YuleDissimilarity[u,v] the Yule dissimilarity 2 nyg ng1 / (n11 noo + 119 no1)

Dissimilarity functions for Boolean data.

Here is some Boolean data.

bdata = {{False, False, False, False, False, True, False, False, True, True},
{True, False, False, False, False, False, False, False, False, True},
{True, False, False, True, False, False, True, False, True, True},
{True, True, False, False, True, False, False, False, True, True},
{True, True, False, False, True, True, True, True, True, True}};

These are the clusters found using the default dissimilarity for Boolean data.
FindClusters[bdata]

{{{False, False, False, False, False, True, False, False, True, True}},
{{True, False, False, False, False, False, False, False, False, True},
{True, False, False, True, False, False, True, False, True, True},
{True, True, False, False, True, False, False, False, True, True},
{True, True, False, False, True, True, True, True, True, True}}}
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EditDistance [u,V] the number of edits to transform u into string v
DamerauLevenshteinDistance [u,v] Damerau-Levenshtein distance between u and v

HammingDistance [u,V] the number of elements whose values disagree in u and v
Dissimilarity functions for string data.

The edit distance is determined by counting the number of deletions, insertions, and substitu-
tions required to transform one string into another while preserving the ordering of characters.
In contrast, the Damerau-Levenshtein distance counts the number of deletions, insertions,
substitutions, and transpositions, while the Hamming distance counts only the number of substi-

tutions.

Here is some string data.

sdata = {"The", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog"};
This clusters the string data using the edit distance.

FindClusters[sdata]

{{The, fox, over, the, lazy, dog}, {quick, brown, jumps}}

The Method option can be used to specify different methods of clustering.

"Agglomerate" find clustering hierarchically

"Optimize" find clustering by local optimization

Explicit settings for the Method option.

The methods "Agglomerate" and "Optimize" determine how to cluster the data for a particular
number of clusters k. "Agglomerate" uses an agglomerative hierarchical method starting with
each member of the set in a cluster of its own and fusing nearest clusters until there are %
remaining. "Optimize" starts by building a set of k representative objects and clustering
around those, iterating until a (locally) optimal clustering is found. The default "Optimize"

method is based on partitioning around medoids.

Additional Method suboptions are available to allow for more control over the clustering. Avail-

able suboptions depend on the Method chosen.

"SignificanceTest" test for identifying the best number of clusters

Suboption for all methods.
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For a given set of data and distance function, the choice of the best number of clusters k may
be unclear. With Method -> {methodname, "SignificanceTest" -> "stest"}, "stest" is used to
determine statistically significant clusters to help choose an appropriate number. Possible
values of "stest" are "Silhouette" and "Gap". The "Silhouette" test uses the silhouette
statistic to test how well the data is clustered. The "Gap" test uses the gap statistic to deter-

mine how well the data is clustered.

The "silhouette" test subdivides the data into successively more clusters looking for the first
minimum of the silhouette statistic.

The "Gap" test compares the dispersion of clusters generated from the data to that derived
from a sample of null hypothesis sets. The null hypothesis sets are uniformly randomly dis-
tributed data in the box defined by the principal components of the input data. The "Gap"
method takes two suboptions: "NullSets" and "Tolerance". The suboption "NullSets" sets
the number of null hypothesis sets to compare with the input data. The option "Tolerance"
sets the sensitivity. Typically larger values of "Tolerance" will favor fewer clusters being cho-

sen. The default settings are "NullSets" -> 5 and "Tolerance" -> 1.

This shows the result of clustering datapairs using the "Silhouette" test.

ListPlot [FindClusters[datapairs,
Method » {Automatic, "SignificanceTest" -> "Silhouette"}]]
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Here are the clusters found using the "Gap" test with the tolerance parameter set to 3. The
larger value leads to fewer clusters being selected.

ListPlot [FindClusters[datapairs,
Method » {Automatic, "SignificanceTest" -» {"Gap", "Tolerance" - 3}}]]
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Note that the clusters found in these two examples are identical. The only difference is how the
number of clusters is chosen.

"Linkage" the clustering linkage to use
Suboption for the "Agglomerate" method.

With Method -> {"Agglomerate", "Linkage" -> f}, the specified linkage function f is used for
agglomerative clustering.

"Single" smallest intercluster dissimilarity
"Average" average intercluster dissimilarity
"Complete" largest intercluster dissimilarity
"WeightedAverage" weighted average intercluster dissimilarity
"Centroid" distance from cluster centroids

"Median" distance from cluster medians

"Ward" Ward's minimum variance dissimilarity

f a pure function

Possible values for the "Linkage" suboption.

Linkage methods determine this intercluster dissimilarity, or fusion level, given the dissimilari-
ties between member elements.

With Linkage -> f, f is a pure function that defines the linkage algorithm. Distances or dissimi-
larities between clusters are determined recursively using information about the distances or
dissimilarities between unmerged clusters to determine the distances or dissimilarities for the
newly merged cluster. The function f defines a distance from a cluster £ to the new cluster
formed by fusing clusters i and j. The arguments supplied to f are dy, di, dj, n, n;, and n,

where d is the distance between clusters and » is the number of elements in a cluster.

These are the clusters found using complete linkage hierarchical clustering.

ListPlot [FindClusters[datapairs, Method » {"Agglomerate"”, "Linkage" - "Complete"}]]

20
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"Iterations" the maximum number of iterations to use
Suboption for the "Optimize" method.

Here are the clusters determined from a single iteration of the "Optimize" method.

ListPlot[FindClusters[datapairs, Method -» {"Optimize", "Iterations" - 1}]]

20

Using Nearest

Nearest is used to find elements in a list that are closest to a given data point.

Nearest [ {elem;,elem;, ...} , x] give the list of elem; to which x is nearest
Nearest [ {elem|->vy,elemy->v,, ...} , X]

give the v; corresponding to the elem; to which x is nearest
Nearest [ {elem; ,elemy,...} —>{vi,Vv2,...} , X]

give the same result

Nearest [ {elem; ,elem,, ...} —>Automatic ,x}

take the v; to be the integers 1, 2, 3, ...

Nearest [data,x,n] give the n nearest elements to x
Nearest [data,x, {nr} ] give up to the n nearest elements to x within a radius r
Nearest [data] generate a NearestFunction[...] which can be applied

repeatedly to different x
Nearest function.

Nearest works with numeric lists, tensors, or a list of strings.

This finds the elements nearest to 4.5.
Nearest[{l, 2, 3, 4, 5, 6, 7, 8}, 4.5]
{4, 5}
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This finds 3 elements nearest to 4.5.
Nearest([{1, 2, 3, 4,5, 6, 7, 8}, 4.5, 3]
{4, 5, 3}

This finds all elements nearest to 4.5 within a radius of 2.
Nearest[{l, 2, 3, 4, 5, 6, 7, 8}, 4.5, {Infinity, 2}]

{4, 5,3, 6}

This finds the points nearest to {1, 2} in 2D.
Nearest[{{1l, 1}, {2, 2}, {3, 3}}, {1, 2}]
({1, 1}, {2, 2}}

This finds the nearest string to "cat".
Nearest[{"bat", "sad", "cake"}, "cat"]

{bat}
The rule-based data syntax lets you use nearest elements to return their labels.

Here two-dimensional points are labeled.
Nearest[{{1l, 1} » a, {2, 2} » b, {3, 3} » c}, {1, 2}]
{a, b}

Nearest[{{1, 1}, {2, 2}, {3, 3}} » {a, b, c}, {1, 2}]
{a, b}

This labels the elements using successive integers.
Nearest[{{1, 1}, {2, 2}, {3, 3}, {4, 5}, {7, 7}} » Automatic, {4, 4}]
{4}

If Nearest is to be applied repeatedly to the same numerical data, you can get significant

performance gains by first generating a NearestFunction.

This generates a set of 10,000 points in 2D and a NearestFunction.

pts = RandomReal[l, {10000, 2}];
nf = Nearest [pts]

NearestFunction[{10000, 2}, <>]
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This finds points in the set that are closest to the 10 target points.

target = RandomReal[l, {10, 2}];
res = Map[nf, target]; // Timing

{4.85723x107, Null}

It takes much longer if NearestFunction is not used.
res2 = Map[Nearest[pts, #] &, target]; // Timing
{0.504032, Null}

res == res2

True
option name default value
DistanceFunction Automatic the distance metric to use

Option for Nearest.

For numerical data, by default Nearest uses the EuclideanDistance. For strings,

EditDistance is used.

Manipulating Numerical Data

When you have numerical data, it is often convenient to find a simple formula that approxi-

mates it. For example, you can try to "fit" a line or curve through the points in your data.

Fit| ievarnfo{fin fore} /x| fit the values y, to a linear combination of functions f;

Fit| {{xoyi} s {224 fit the points (x,, y,) to a linear combination of the f;

yz},...},{fl 5 fz,...},x]

Fitting curves to linear combinations of functions.

This generates a table of the numerical values of the exponential function. Table is discussed
in "Making Tables of Values".

data = Table[Exp[x/5.], {x, 7}]
{1.2214, 1.49182, 1.82212, 2.22554, 2.71828, 3.32012, 4.0552}
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This finds a least-squares fit to data of the form ¢; + ¢; x + ¢3 x2. The elements of data are
assumed to correspond to values 1, 2, ... of x.
Fit[data, {1, x, x" 2}, x]

1.09428 + 0.0986337 x + 0.0459482 x?

This finds a fit of the form ¢; + co x + 3 X% + ¢4 X°.
Fit[data, {1, x, x"3, x5}, x]

0.96806 + 0.246829 x + 0.00428281 x> - 6.57948x10° x°

This gives a table of x, y pairs.
data = Table[{x, Exp[Sin[x]]}, {x, 0., 1., 0.2}]
{{0., 1.}, {0.2, 1.21978}, {0.4, 1.47612}, {0.6, 1.75882}, {0.8, 2.04901}, {1., 2.31978}}

This finds a fit to the new data, of the form ¢ + ¢; sin (x) + ¢3 sin (2 x).
Fit[%, {1, Sin[x], Sin[2x]}, x]

0.989559 + 2.04199 Sin[x] - 0.418176 Sin[2 x|

FindFit [data, form, {pi,p2,...} ,X]
find a fit to form with parameters p;

Fitting data to general forms.

This finds the best parameters for a linear fit.
FindFit[data, a+bx+cx"2, {a, b, c}, x]

{a—-0.991251, b—>1.16421, ¢ > 0.174256}

This does a nonlinear fit.
FindFit[data, a+b" (c+dx), {a, b, ¢, d}, x]
{a—>-3.65199, b 1.65838, c > 3.03496, d > 0.50107}

One common way of picking out "signals" in numerical data is to find the Fourier transform, or

frequency spectrum, of the data.

Fourier [data] numerical Fourier transform

InverseFourier [data] inverse Fourier transform

Fourier transforms.
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Here is a simple square pulse.
data=4{1,1,1,1 -1, -1, -1, -1}

{1, 1, 1,1, -1, -1, -1, -1}

This takes the Fourier transform of the pulse.

Fourier[data]

{0.+0.4, 0.707107 +1.707114, 0. +0.1, 0.707107 + 0.292893 1,
0.+0.1, 0.707107 - 0.292893 1, 0.+0.1, 0.707107 -1.707111}

Note that the Fourier function in Mathematica is defined with the sign convention typically
used in the physical sciences—opposite to the one often used in electrical engineering. "Fourier

Transforms" gives more details.

Curve Fitting

There are many situations where one wants to find a formula that best fits a given set of data.

One way to do this in Mathematica is to use Fit.

Fit[({fi,far...} s {fun,, funy,...} ,x] find a linear combination of the fun, that best fits the
values f;

Basic linear fitting.

Here is a table of the first 20 primes.
fp = Table[Prime[x], {x, 20}]

{2, 3,5, 7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71}

Here is a plot of this "data".
gp = ListPlot[fp]

70
60
50
40
30

20




Mathematics and Algorithms | 329

This gives a linear fit to the list of primes. The result is the best linear combination of the
functions 1 and x.

Fit[fp, {1, x}, x]
~7.67368 + 3.77368 x

Here is a plot of the fit.
Plot[%, {x, 0, 20}]
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Here is the fit superimposed on the original data.

Show[%, gp]
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This gives a quadratic fit to the data.
Fit[fp, {1, x, x" 2}, x]

-1.92368 +2.2055x + 0.0746753 x°
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Here is a plot of the quadratic fit.
Plot[%, {x, 0, 20}]
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This shows the fit superimposed on the original data. The quadratic fit is better than the linear
one.

Show[%, gp]
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{firfor---} data points obtained when a single coordinate takes on
values 1, 2, ...
{{xi,fitso {2, o}, } data points obtained when a single coordinate takes on
values xi, x, ...
Xty ide i yoren o} e} data points obtained with values x;, y;, ... of a sequence of

coordinates
Ways of specifying data.

If you give data in the form {f;, >, ...} then Fit will assume that the successive f; correspond to

values of a function at successive integer points {1, 2, ...}. But you can also give Fit data that

corresponds to the values of a function at arbitrary points, in one or more dimensions.

Fit [data, {fun,, funy,...} , {x,y,...}] fit to a function of several variables

Multivariate fitting.
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This gives a table of the values of x, yand 1 +5x—xy. You need to use Flatten to get it in the
right form for Fit.

Flatten[Table[{x, ¥y, 1+5x-xy}, {x, 0,1, 0.4}, {y, 0,1, 0.4}], 1]

{{0., 0., 1.}, {0., 0.4, 1.}, {0., 0.8, 1.}, {0.4, 0., 3.}, {0.4, 0.4, 2.84},
{0.4, 0.8, 2.68}, {0.8, 0., 5.}, {0.8, 0.4, 4.68}, {0.8, 0.8, 4.36}}

This produces a fit to a function of two variables.
Fit[%, {1, x, ¥, xy}, {x, ¥}]

1.+5.%x+5.21108x10 ¥y -1.xy

Fit takes a list of functions, and uses a definite and efficient procedure to find what linear
combination of these functions gives the best least-squares fit to your data. Sometimes, how-
ever, you may want to find a nonlinear fit that does not just consist of a linear combination of
specified functions. You can do this using FindrFit, which takes a function of any form, and

then searches for values of parameters that yield the best fit to your data.

FindFit [data, form, search for values of the par; that make form best fit data
{par|,pary,...} ,x]

FindFit [data, form,pars, {x,y,...}] fit multivariate data

Searching for general fits to data.

This fits the list of primes to a simple linear combination of terms.
FindFit[fp, a+bx + cExp[x], {a, b, c}, x]

{a>-6.78932, b 3.64309, c>1.26883x10°}

The result is the same as from Fit.
Fit[fp, {1, x, Exp[x]}, x]

-6.78932 + 1.26883x107% e* + 3.64309 x

This fits to a nonlinear form, which cannot be handled by Fit.
FindFit[fp, axLog[b+cx], {a, b, c}, x]
{a—>1.42076, b—>1.65558, c > 0.534645}

By default, both Fit and FindFit produce least-squares fits, which are defined to minimize the
quantity y*=3, | 7; |?, where the r; are residuals giving the difference between each original data
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point and its fitted value. One can, however, also consider fits based on other norms. If you set
the option NormFunction ->u, then FindFit will attempt to find the fit that minimizes the
quantity u[r], where r is the list of residuals. The default is NormFunction -> Norm, correspond-

ing to a least-squares fit.

This uses the co-norm, which minimizes the maximum distance between the fit and the data.
The result is slightly different from least-squares.

FindFit[fp, axLog[b +cx], {a, b, ¢}, x, NormFunction -> (Norm[#, Infinity] &)]
{a->1.15077, b->1.0023, ¢ > 1.04686}

FindFit works by searching for values of parameters that yield the best fit. Sometimes you
may have to tell it where to start in doing this search. You can do this by giving parameters in

the form {{a, ao}, {b, by}, ...}. FindFit also has various options that you can set to control how it

does its search.

FindFit [data, finds a best fit subject to the parameter constraints cons
{form,cons} , pars,vars]

Searching for general fits to data.
This gives a best fit subject to constraints on the parameters.

FindFit[fp, {axLog[b+cx], {0<=a<=1,0<=b=<1, c21}}, {a, b, c}, x]

{a>1., b>1.34569x10°, ¢ > 1.69145}

option name default value

NormFunction Norm the norm to use

AccuracyGoal Automatic number of digits of accuracy to try to get

PrecisionGoal Automatic number of digits of precision to try to get

WorkingPrecision Automatic precision to use in internal computations

MaxIterations Automatic maximum number of iterations to use

StepMonitor None expression to evaluate whenever a step is
taken

EvaluationMonitor None expression to evaluate whenever form is
evaluated

Method Automatic method to use

Options for FindFit.
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Statistical Model Analysis

When fitting models of data, it is often useful to analyze how well the model fits the data and
how well the fitting meets assumptions of the fitting. For a number of common statistical mod-
els, this is accomplished in Mathematica by way of fitting functions that construct FittedModel
objects.

FittedModel represents a symbolic fitted model
Object for fitted model information.

FittedModel objects can be evaluated at a point or queried for results and diagnostic informa-
tion. Diagnostics vary somewhat across model types. Available model fitting functions fit linear,
generalized linear, and nonlinear models.

LinearModelFit constructs a linear model
GeneralizedLinearModelFit constructs a generalized linear model
LogitModelFit constructs a binomial logistic regression model
ProbitModelFit constructs a binomial probit regression model
NonlinearModelFit constructs a nonlinear least-squares model

Functions that generate FittedModel objects.

This fits a linear model assuming x values 1, 2, ....
1m = LinearModelFit[{1.5, 3.4, 7.1, 8.3, 10.4}, x, x]

FittedModel| -0.67+2.27x

Here is the functional form of the fitted model.
Normal [1m]

-0.67 +2.27x

This evaluates the model for x = 2.5.
1m[2.5]

5.005
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Here is a shortened list of available results for the linear fitted model.
Im["Properties"] // Short

{AdjustedRSquared, AIC, <<58>>, StudentizedResiduals, VarianceInflationFactors}

The major difference between model fitting functions such as LinearModelFit and functions
such as Fit and Findrit is the ability to easily obtain diagnostic information from the
FittedModel objects. The results are accessible without refitting the model.

This gives the residuals for the fitting.
Im["FitResiduals"]

(-0.1, -0.47, 0.96, -0.11, -0.28}

Here multiple results are obtained at once.

Im[{"BestFitParameters", "ANOVATable"}]

DF SS MS F Statistic P-Value
{{_0 67, 2.27}, X 1 51.529 51.529 124.366 0.00154521}
.67, 2. ’
Error 3 1.243 0.414333

Total 4 52.772

Fitting options relevant to property computations can be passed to FittedModel objects to
override defaults.

This gives default 95% confidence intervals.
1lm["ParameterConfidencelIntervals"]

{{-2.81849, 1.47849}, {1.62221, 2.91779}}

Here 90% intervals are obtained.
Im["ParameterConfidencelIntervals", ConfidenceLevel - .9]

{{-2.25877, 0.918767}, {1.79097, 2.74903}}

Typical data for these model fitting functions takes the same form as data in other fitting func-
tions such as Fit and FindFit.

iryar...} data points with a single predictor variable taking values 1,
2, ...

{{xt1r X127 s 1} s {X21sX20,...,2},...} data points with explicit coordinates

Data specifications.
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Linear Models

Linear models with assumed independent normally distributed errors are among the most

common models for data. Models of this type can be fitted using the LinearModelFit function.

LinearModelFit | obtain a linear model with basis functions f; and a single
ieyar- o {finkar 3o x] predictor variable x
LinearModelFit | obtain a linear model of multiple predictor variables x;

{{xteXi2r oo {210 %02, -0 Y23 3

{flrf21~~~} ’ {xlIXZI"'}]

LinearModelFit[{m,v}] obtain a linear model based on a design matrix m and
response vector v

Linear model fitting.

Linear models have the form y = gy + 8, fi + B> f» + --- where y is the fitted or predicted value, the
B; are parameters to be fitted, and the £ are functions of the predictor variables x;. The models
are linear in the parameters ;. The f; can be any functions of the predictor variables. Quite

often the f; are simply the predictor variables x;.

This fits a linear model to the first 20 primes.

Im = LinearModelFit [Array[Prime, 20], x, x]

FittedModel [ _7.67368+3.77368 }

Options for model specification and for model analysis are available.

option name default value

ConfidenceLevel 95/100 confidence level to use for parameters and
predictions

IncludeConstantBasis True whether to include a constant basis function

LinearOffsetFunction None known offset in the linear predictor

NominalVariables None variables considered as nominal or
categorical

VarianceEstimatorFunction Automatic function for estimating the error variance

Weights Automatic weights for data elements

WorkingPrecision Automatic precision used in internal computations

Options for LinearModelFit.



336 | Mathematics and Algorithms

The weights option specifies weight values for weighted linear regression. The
NominalVariables option specifies which predictor variables should be treated as nominal or
categorical. With Nominalvariables -> All, the model is an analysis of variance (ANOVA)

model. With Nominalvariables -> {x;, ..., Xi_1, Xi+1, ..., X,} the model is an analysis of covari-

ance (ANCOVA) model with all but the it predictor treated as nominal. Nominal variables are
represented by a collection of binary variables indicating equality and inequality to the observed

nominal categorical values for the variable.

ConfidenceLevel, VarianceEstimatorFunction, and WorkingPrecision are relevant to the
computation of results after the initial fitting. These options can be set within LinearModelFit
to specify the default settings for results obtained from the FittedModel object. These options
can also be set within an already constructed FittedModel object to override the option values

originally given to LinearModelFit.

Here are the default and mean squared error variance estimates.

{Im["EstimatedVariance"],
1lm["EstimatedVariance", VarianceEstimatorFunction » (Mean[#"2] &) ]}

{6.71608, 6.04447}

IncludeConstantBasis, LinearOffsetFunction, NominalVariables, and Weights are rele-
vant only to the fitting. Setting these options within an already constructed FittedModel object

will have no further impact on the result.
A major feature of the model fitting framework is the ability to obtain results after the fitting.

The full list of available results can be obtained from the "properties" value.

This is the number of properties available for linear models.
Ilm["Properties"] // Length
62

The properties include basic information about the data, fitted model, and numerous results and

diagnostics.
"BestFit" fitted function
"BestFitParameters" parameter estimates

"Data" the input data or design matrix and response vector
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"DesignMatrix" design matrix for the model
"Function" best-fit pure function
"Response" response values in the input data

Properties related to data and the fitted function.

The "BestFitParameters" property gives the fitted parameter values {B,, Bi, ...}. "BestFit"
is the fitted function By + B fi + B fo+-- and "Function" gives the fitted function as a pure

function. The "DesignMatrix" is the design or model matrix for the data. "Response" gives the

list of the response or y values from the original data.

"FitResiduals" difference between actual and predicted responses
"StandardizedResiduals"” fit residuals divided by the standard error for each residual
"StudentizedResiduals" fit residuals divided by single deletion error estimates

Types of residuals.

Residuals give a measure of the point-wise difference between the fitted values and the original
responses. "FitResiduals" gives the differences between the observed and fitted values

{(y1 -Y1r Y2-Ys ...}. "StandardizedResiduals" and "StudentizedResiduals" are scaled forms

th

of the residuals. The i standardized residual is (y;-3;) / & (1-h;) /w; where 6" is the

estimated error variance, h; is the i diagonal element of the hat matrix, and w; is the weight
for the i data point. The i studentized residual uses the same formula with & replaced by

Er(,»)z, the variance estimate omitting the i data point.

"ANOVATable" analysis of variance table
"ANOVATableDegreesOfFreedom" degrees of freedom from the ANOVA table
"ANOVATableEntries" unformatted array of values from the table
"ANOVATableFStatistics" F statistics from the table
"ANOVATableMeanSquares" mean square errors from the table
"ANOVATablePValues" p-values from the table
"ANOVATableSumsOfSquares"” sums of squares from the table

"CoefficientOfvariation" response mean divided by the estimated standard deviation
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"EstimatedVariance" estimate of the error variance

"PartialSumOfSquares” changes in model sum of squares as nonconstant basis
functions are removed

"SequentialSumOfSquares" the model sum of squares partitioned componentwise

Properties related to the sum of squared errors.

"ANOVATable" gives a formatted analysis of variance table for the model.
"ANOVATableEntries" gives the numeric entries in the table and the remaining ANOVATable
properties give the elements of columns in the table so individual parts of the table can easily
be used in further computations.

This gives a formatted ANOVA table for the fitted model.
1m["ANOVATable"]

DF SS S F Statistic P-Value

X 1 9470.06 9470.06 1410.06 1.49794x10718
Error 18 120.889 6.71608
Total 19 9590.95

Here are the elements of the MS column of the table.
1m["ANOVATableMeanSquares"]
{9470.06, 6.71608}

"CorrelationMatrix" parameter correlation matrix
"CovarianceMatrix" parameter covariance matrix
"EigenstructureTable" eigenstructure of the parameter correlation matrix
"EigenstructureTableEigenvalu- eigenvalues from the table

es"
"EigenstructureTableEntries" unformatted array of values from the table
"EigenstructureTableIndexes" index values from the table

"EigenstructureTablePartitions partitioning from the table

"ParameterConfidencelIntervals" parameter confidence intervals

"ParameterConfidenceIntervalT- table of confidence interval information for the fitted
able" parameters

"ParameterConfidenceIntervalT: unformatted array of values from the table
ableEntries"

"ParameterConfidenceRegion" ellipsoidal parameter confidence region
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"ParameterErrors" standard errors for parameter estimates
"ParameterPValues" p-values for parameter  statistics
"ParameterTable" table of fitted parameter information
"ParameterTableEntries" unformatted array of values from the table
"ParameterTStatistics" t statistics for parameter estimates
"VarianceInflationFactors" list of inflation factors for the estimated parameters

Properties and diagnostics for parameter estimates.

y -1
"CovarianceMatrix" gives the covariance between fitted parameters. The matrix is & X WX)

where & is the variance estimate, X is the design matrix, and W is the diagonal matrix of
weights. "CorrelationMatrix" is the associated correlation matrix for the parameter esti-
mates. "ParameterErrors" is equivalent to the square root of the diagonal elements of the

covariance matrix.

"ParameterTable" and "ParameterConfidencelIntervalTable" contain information about the

individual parameter estimates, tests of parameter significance, and confidence intervals.

Here is some data.

data = {{8.71, 6.92, 18.89}, {6.05, 5.97, 15.08}, {6.24, 0.99, 5.92},
(8.25, 3.37, 11.39}, {6.58, 8.22, 20.77}, {4.14, 9., 21.09}, {4.35, 9.94, 24.32},
(8.99, 4.47, 13.79}, {2.82, 3.91, 10.68}, {5.14, 0.4, 3.82}};

This fits a model using both predictor variables.
1m2 = LinearModelFit[data, {x, v}, {x, ¥}]

FittedModel| 1.40308+0.340391x+2.08429y

These are the formatted parameter and parameter confidence interval tables.

1m2 [ {"ParameterTable", "ParameterConfidenceIntervalTable"}]

Estimate  Standard Error t Statistic P-Value Estimate Standard Error Confidence Interval
{ 1 1.40308 0.595477 2.35622 0.0506221 1 1.40308 0.595477 {-0.00500488, 2.81116)}
x 0.340391 0.0782093 435231 0.00334539 ' x 0.340391 0.0782093 {0.155456, 0.525327}
y 2.08429 0.0496681 41.9643 1.13829x107° y 2.08429 0.0496681 {1.96684, 2.20174}

Here 99% confidence intervals are used in the table.
1m2 [ "ParameterConfidenceIntervalTable", ConfidenceLevel -» .99]

Estimate Standard Error Confidence Interval
1 1.40308 0.595477 {-0.680788, 3.48694}
x 0.340391 0.0782093 {0.0666993, 0.614084}
y 2.08429 0.0496681 {1.91048, 2.2581}
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The Estimate column of these tables is equivalent to "BestFitParameters". The ¢ statistics are
the estimates divided by the standard errors. Each p-value is the two-sided p-value for the
statistic and can be used to assess whether the parameter estimate is statistically significantly
different from 0. Each confidence interval gives the upper and lower bounds for the parameter
confidence interval at the level prescribed by the cConfidenceLevel option. The various
ParameterTable and ParameterConfidenceIntervalTable properties can be used to get the

columns or the unformatted array of values from the table.

"VarianceInflationFactors" is used to measure the multicollinearity between basis func-

tions. The iMinflation factor is equal to 1/(1-R?) where R? is the coefficient of variation from

fitting the " basis function to a linear function of the other basis functions. With

IncludeConstantBasis -> True, the first inflation factor is for the constant term.

"EigenstructureTable" gives the eigenvalues, condition indices, and variance partitions for
the nonconstant basis functions. The Index column gives the square root of the ratios of the
eigenvalues to the largest eigenvalue. The column for each basis function gives the proportion
of variation in that basis function explained by the associated eigenvector.
"EigenstructureTablePartitions" gives the values in the variance partitioning for all basis

functions in the table.

"BetaDifferences" DFBETAS measures of influence on parameter values
"CatcherMatrix" catcher matrix

"CookDistances" list of Cook distances

"CovarianceRatios" COVRATIO measures of observation influence
"DurbinWatsonD" Durbin-Watson d statistic for autocorrelation
"FitDifferences" DFFITS measures of influence on predicted values
"FVarianceRatios" FVARATIO measures of observation influence
"HatDiagonal" diagonal elements of the hat matrix
"SingleDeletionVariances" list of variance estimates with the it" data point omitted

Properties related to influence measures.
Point-wise measures of influence are often employed to assess whether individual data points
have a large impact on the fitting. The hat matrix and catcher matrix play important roles in

such diagnostics. The hat matrix is the matrix # such that y=Hy where y is the observed
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response vector and y is the predicted response vector. "HatDiagonal" gives the diagonal
elements of the hat matrix. "CatcherMatrix" is the matrix C such that 3=Cy where g is the

fitted parameter vector.

"FitDifferences" gives the DFFITS values that provide a measure of influence of each data
point on the fitted or predicted values. The i*" DFFITS value is given by +/ h;:/(1 — h;) r; where h;

is the /" hat diagonal and r, is the ™" studentized residual.

"BetaDifferences" gives the DFBETAS values that provide measures of influence of each data
point on the parameters in the model. For a model with p parameters, the i element of
"BetaDifferences" is a list of length p with the ;i value giving the measure the of the influ-

ence of data point i on the jth parameter in the model. The " "BetaDifferences" vector can
be written as {c;i, ..., ;) ri/ (1 = i) /(2=12f=1c§k) where ¢ is the j,k™ element of the catcher

mnatrix.

"CookDistances" gives the Cook distance measures of leverage given. The it Cook distance is

given by (h;/ (1-hy;) ry / p Where ry; is the i standardized residual.

The i™ element of "CovarianceRatios" is given by (n-p)”/((1 -hy) (i +n-p-1)’) and the "

t

. . . A 2 A2 A 2 . . . .
"FVarianceRatios" value is equal to o /(0' (l—h,-i)) where &, is the i single deletion

variance.

The Durbin-Watson d statistic "DurbinWatsonD" is used for testing the existence of a first-order

autoregressive process. The d statistic is equivalent to Z’z‘f (ri+|—r,»)2/Z':1r2 where r; is the

i

iMresidual.

This plots the Cook distances for the bivariate model.
ListPlot[1m2["CookDistances"], Filling - 0]
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"MeanPredictionBands"

"MeanPredictionConfidenceInte-

rvals"

"MeanPredictionConfidenceInte-

rvalTable"

"MeanPredictionConfidenceInte-

rvalTableEntries"
"MeanPredictionErrors"
"PredictedResponse"”

"SinglePredictionBands"

"SinglePredictionConfidenceln:-

tervals"

"SinglePredictionConfidenceIn-

tervalTable"

"SinglePredictionConfidenceIn-

tervalTableEntries"

"SinglePredictionErrors"

Properties of predicted values.

Tabular results for confidence intervals are given by "MeanPredictionConfidenceInterval-
Table " and "SinglePredictionConfidenceIntervalTable". These include the observed and
predicted responses, standard error estimates, and confidence intervals for each point. Mean

prediction confidence intervals are often referred to simply as confidence intervals and single

confidence bands for mean predictions
confidence intervals for the mean predictions

table of confidence intervals for the mean predictions

unformatted array of values from the table

standard errors for mean predictions
fitted values for the data
confidence bands based on single observations

confidence intervals for the predicted response of single
observations

table of confidence intervals for the predicted response of
single observations

unformatted array of values from the table

standard errors for the predicted response of single
observations

prediction confidence intervals are often referred to as prediction intervals.

"MeanPredictionBands" and "SinglePredictionBands"

variables.

give functions of the predictor



Here is the mean prediction table.

1m2 [ "MeanPredictionConfidencelIntervalTable"]

Observed Predicted

18.89 18.7912
15.08 15.9057
5.92 5.59057
11.39 11.2354
20.77 20.7757
21.09 21.5709
24.32 23.6016
13.79 13.78
10.68 10.5126
3.82 3.9864

This gives the 90% mean prediction intervals.

Standard Error Confidence Interval

0.272818
0.155811
0.262819
0.236917
0.215751
0.271392
0.295281
0.269774
0.315597
0.306026

{18.1461, 19.4363}
{15.5372, 16.2741}
{4.9691, 6.21204}

{10.6751, 11.7956}
{20.2656, 21.2859}
{20.9292, 22.2127)}
{22.9034, 24.2999}
{13.1421, 14.4179}
{9.76629, 11.2588}
{3.26277, 4.71004}
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1m2 [ "MeanPredictionConfidencelIntervals", ConfidenceLevel - .9]

{{18.2743, 19.3081}, {15.6105, 16.2009}, {5.09263, 6.0885},

{10.7865, 11.6842}, {20.367, 21.1845}, {21.0567, 22.0851}, {23.0422, 24.1611},

{13.2689, 14.2911}, {9.91464, 11.1105}, {3.40661, 4.56619}}

is given by 1—(

"AdjustedRSquared"

"RSquared"

n

n-—

Goodness of fit measures.

1 2
) (1= R%).

R? adjusted for the number of model parameters

Akaike Information Criterion
Bayesian Information Criterion

coefficient of determination R?

Goodness of fit measures are used to assess how well a model fits or to compare models. The
coefficient of determination "Rsquared" is the ratio of the model sum of squares to the total

sum of squares. "AdjustedRSquared" penalizes for the number of parameters in the model and

"AIC" and "BIC" are likelihood-based goodness of fit measures. Both are equal to -2 times the
log-likelihood for the model plus kp where p is the number of parameters to be estimated
including the estimated variance. For "AIC" k is 2, and for "BIC" k is log(n).
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Generalized Linear Models

The linear model can be seen as a model where each response value y is an observation from a
normal distribution with mean value y =8y +8, fi+ B, fo+---. The generalized linear model
extends to models of the form y = ¢! (By + Bi fi + B> f» + ...) With each y assumed to be an obser-
vation from a distribution of known exponential family form with mean y and g being an invert-
ible function over the support of the exponential family. Models of this sort can be obtained via

GeneralizedLinearModelFit.

GeneralizedLinearModelFit | obtain a generalized linear model with basis functions f;
Viryard o {finkar 3o x] and a single predictor variable x
GeneralizedLinearModelFit | obtain a generalized linear model of multiple predictor

{{xteX2r- o1} o {X21,%02,...4 Y2} }+ variables x;

{firor-- Yo {x1sx2,...}]

GeneralizedLinearModelFit [ obtain a generalized linear model based on a design matrix
{m,v}] m and response vector v

Generalized linear model fitting.

The invertible function g is called the link function and the linear combination By + 81 fi + B2 fo + -+
is referred to as the linear predictor. Common special cases include the linear regression model
with the identity link function and Gaussian or normal exponential family distribution, logit and
probit models for probabilities, Poisson models for count data, and gamma and inverse Gaus-

sian models.
The error variance is a function of the prediction y and is defined by the distribution up to a
constant ¢, which is referred to as the dispersion parameter. The error variance for a fitted

value y can be written as g?)v(&), where & is an estimate of the dispersion parameter obtained
from the observed and predicted response values, and v(y) is the variance function associated

with the exponential family evaluated at the value y.

This fits a linear regression model.

glml = GeneralizedLinearModelFit [Sqrt[Range[10]], x, x]

FittedModel| 0.973709+0.231476x
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This fits a canonical gamma regression model to the same data.

glm2 = GeneralizedLinearModelFit [
Sqrt[Range[10]], x, x, ExponentialFamily » "Gamma"]

1

FittedModel| —
0.742193 - «<20> x

Here are the functional forms of the models.
Map [Normal, {glml, glm2}]
1

{0.973709+o.231476x, }

0.742193 - 0.0467911 x

Logit and probit models are common binomial models for probabilities. The link function for the

logit model is log(%) and the link for the probit model is the inverse CDF for a standard normal

distribution V2 erf"'(2y-1). Models of this type can be fitted via GeneralizedLinearModelFit
with ExponentialFamily -> "Binomial"” and the appropriate LinkFunction or via

LogitModelFit and ProbitModelFit.

LogitModelFit [data, funs,vars] obtain a logit model with basis functions funs and predictor
variables vars

LogitModelFit [{m,v}] obtain a logit model based on a design matrix m and
response vector v

ProbitModelFit [data, funs,vars] obtain a probit model fit to data

ProbitModelFit [ {m,v}] obtain a probit model fit to a design matrix m and response
vector v

Logit and probit model fitting.

Parameter estimates are obtained via iteratively r