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The Geometry of Spacetime

1. Parable of the Surveyors

Once upon a time there was a Daytime surveyor who measured off the king’s
lands. He took his directions of north and east from a magnetic compass
needle. Eastward directions from the center of the town square he measured in
meters (x in meters). Northward directions were sacred and were measured in
a different unit, in miles (y in miles). His records were complete and accurate
and were often consulted by the Daytimers. (See Fig. 1.)

Nighttimers used the services of another surveyor. His north and east
directions were based on the North Star. He too measured distances eastward
from the center of the town square in meters (x” in meters) and sacred distances
north in miles (y in miles). His records were complete and accurate. Every
corner of a plot appeared in his book with its two coordinates, x" and )".

One fall a student of surveying turned up with novel openmindedness.
Contrary to all previous tradition he attended both of the rival schools
operated by the two leaders of surveying. At the day school he learned from
one expert his method of recording the location of the gates of the town and
the corners of plots of land. At night school he learned the other method. As
the days and nights passed the student puzzled more and more in an attempt
to find some harmonious relationship between the rival ways of recording
location. He carefully compared the records of the two surveyors on the loca-
tions of the town gates relative to the center of the town square:

Table 1. Two different sets of records for the same points.

Daytime surveyor’s axes oriented Nighttime surveyor’s axes
Place 1o magnetic north oriented to the North Star
(x in meters; y in miles) (x' in meters; y' in miles)
Town square 0 0 0 0
Gate A XA, VA S 25 YRS
Gate B XRB VB X' _V'n

Other gates

In defiance of tradition, the student took the daring and heretical step to
convert northward measurements, previously expressed always in miles, into
meters by multiplication with a constant conversion factor, k. He then dis-
covered that the quantity [(xa)* + (kya)*]"? based on Daytime measurements
of the position of gate A had exactly the same numerical value as the quantity

Daytime surveyor uses
magnetic north

Nighttime surveyor
uses North Star north
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Discovery: invariance
of distance

Fig. 1. The town and its gates, showing coordi-
nate axes used by two different surveyors.

[(xa")* + (kya’)*]"* computed from the readings of the Nighttime surveyor for
gate A. He tried the same comparison on the readings computed from the re-
corded positions of gate B, and found agreement here too. The student’s
excitement grew as he checked his scheme of comparison for all the other
town gates and found everywhere agreement. He decnded to give his dis-
covery a name. He called the quantity

(1) [(x) + (kyy]'»

the distance of the point (x, y) from the center of town. He said that he had
discovered the principle of the invariance of distance ;: that one gets exactly the
same distances from the Daytime coordinates as from the Nighttime coordi-
nates, despite the fact that the two sets of surveyors’ numbers are quite
different.

This story illustrates the naive state of physics before the discovery of
special relativity by Einstein of Bern, Lorentz of Leiden, and Poincaré of
Paris. How naive?

I. Surveyors in this mythical kingdom measured northward distances in a
sacred unit, the mile, different from the unit used in measuring eastward
distances. Similarly, people studying physics measured time in a sacred
unit, the second, different from the unit used in measuring space. No one
thought of using the same unit for both, or of what one could learn by
squaring and combining space and time coordinates when both were
measured in meters. The conversion factor between seconds and meters,
namely the speed of light, ¢ = 2.997925 X 108 meters per second, was
regarded as a sacred number. It was not recognized as a mere conversion
factor like the factor of conversion between miles and meters—a factor
that arose out of historical accidents alone, with no deeper physical
significance.

2. In the parable the northbound coordinates, y and ’, as recorded by the
two surveyors did not differ very much because the two directions of
north were separated only by the small angle of 10 degrees. At first our
mythical student thought the small differences between y and y’ were due
to surveying error alone. Analogously, people have thought of the time
between thg explosion of two firecrackers as the same, by whomever
observed. Only in 1905 did we learn that the time difference between
the second event and the first, or “reference event,” really has dif-
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ferent values, 7 and ¢/, for observers in different states of motion.
Think of one observer standing quietly in the laboratory. The other
observer zooms by in a high-speed rocket. The rocket comes in through
the front entry, goes down the middle of the long corridor and out the
back door. The first firecracker goes off in the corridor (“‘reference
event”) then the other (“event A”). Both observers agree that the
reference event establishes the zero of time and the origin for distance
measurements. The second explosion occurs, for example, 5 seconds
later than the first, as measured by laboratory clocks, and 12 meters
further down the corridor. Then its time coordinate is 74 = 5 seconds
and its position coordinate is x, = 12 meters. Other explosions and
events also take place down the length of the corridor. The readings of
the two observers can be arranged as in Table 2.

Table 2. Space and time coordinates of the same events as seen by two
observers in relative motion. For simplicity the y and z co-
ordinates are zero, and the rocket is moving in the x direction.

Coordinates as measured by observer who is

Event
standing moving by in rocket
(x in meters; t in seconds) (x' in meters; t' in seconds)
Reference event 0 0 0 0
Event A XA Ia XA t'a
Event B XB In X'R t'n

Other events

. The mythical student’s discovery of the concept of distance is matched by
the Einstein-Poincaré discovery in 1905 of the idea of interval. The in-
terval as calculated from the one observer’s measurements

(2) interval = [(cts)? — (xa)2]12

agrees with the interval as calculated from the other observer’s measure-
ments

3) interval = [(cfa’)? — (xa")]'?

even though the separate coordinates employed in the two calculations
do not agree. The two observers will find different space and time coordi-
nates for events A, B, C,...relative to the same reference event, but
when they calculate the Einstein intervals between these events, their
results will agree. The invariance of the interval—its independence from
the choice of the reference frame—forces one to recognize that time can-
not be separated from space. Space and time are part of the single
entity, spacetime. The geometry of spacetime is truly four-dimensional.
In one way of speaking, the “direction of the time axis” depends upon the
state of motion of the observer, just as the directions of the y axes
employed by the surveyors depend upon their different standards of
“north.”

One observer uses
laboratory frame

Another observer uses
rocket frame

Discovery: invariance
of interval
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Measure time in meters

The rest of this chapter is an elaboration of the analogy between surveying
in space and relating events to one another in spacetime. Table 3 is a preview
of this elaboration. To recognize the unity of space and time one follows the
procedure that makes a landscape take on meaning—he looks at it from several
angles. This is the reason for comparing space and time coordinates of an
event in two different reference frames in relative motion.

Table 3. Preview: Elaboration of the parable of the SUrveyors.

Parable of the surveyors:
geometry of space

Analogy to physices:
geometry of spacetime

The task of the surveyor is to locate the posi-
tion of a point (gate A) using one of two co-
ordinate systems that are rotated relative to
one another.

The two coordinate systems: oriented to
magnetic north and to North-Star north.

For convenience all surveyors agree to make
position measurements with respect to a
common origin (the center of the town
square).

The analysis of the surveyors’ results is sim-
plified if x and y coordinates of a point are
both measured in the same units, in meters.

The separate coordinates x, and y, of gate
A do not have the same values respectively in
two coordinate systems that are rotated
relative to one another.

Invariance of distance. The distance (x5 +
ya®)'? between gate A and the town square
has the same value when calculated using
measurements made with respect to either of
two rotated coordinate systems (x4 and y,
both measured in meters),

Euclidean transformation. Using Euclidean
geometry, the surveyor can solve the follow-
ing problem: Given the Nighttime coordin-
ates x," and y4’ of gate A and the relative
inclination of respective coordinate axes,
find the Daytime coordinates x, and y4 of
the same gate.

The task of the physicist is to locate the posi-
tion and time of an event (firecracker explo-
sion A) using one of two reference frames
which are in motion relative to one another.

The two reference frames: the laboratory
frame and the rocket frame.

For convenience all physicists agree to make
position and time measurements with re-
spect to a common reference event (explo-
sion of the reference firecracker).

The analysis of the physicists’ results is sim-
plified if the x and f coordinates of an event
are both measured in the same units, in
meters.

The separate coordinates x4 and 7, of event
A do not have the same values respectively in
two reference frames that are in uniform
motion relative to one another.

Invariance of the interval. The interval (1,2 —
xa?)'? between event A and the reference
event has the same value when calculated
using measurements made with respect to
either of two reference frames in relative
motion (xx and 74 both measured in meters).

Lorentz  transformation. Using Lorentz
geometry, the physicist can solve the follow-
ing problem: Given the rocket coordinates
xa’ and t," of event A and the relative
velocity between rocket and laboratory
frames, find the laboratory coordinates x,
and 75 of the same event.

The parable of the surveyors cautions us to use the same unit to measure
both distance and time. So use meters for both. Time can be measured in
meters. When a mirror is mounted at each end of a stick one-half meter
long, a flash of light may be bounced back and forth between these two mir-
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rors. Such a device is a clock. This clock may be said to “tick’ each time the
light flash arrives back at the first mirror. Between ticks the light flash has
traveled a round-trip distance of 1 meter. Therefore the unit of time between
ticks of this clock is called I meter of light-travel time or more simply I meter
of time. (Show that 1 second is approximately equal to 3 X 10® meters of
light-travel time.)

One purpose of the physicist is to sort out simple relations between events.
To do this here he might as well choose a particular reference frame with
respect to which the laws of physics have a simple form. Now, the force of
gravity acts on everything near the earth. Its presence complicates the laws of
motion as we know them from common experience. In order to eliminate this
and other complications, we will, in the next section, focus attention on a
freely falling reference frame near the earth. In this reference frame no gravi-
tational forces will be felt. Such a gravitation-free reference frame will be
called an inertial reference frame. Special relativity deals with the classical
laws of physics expressed with respect to an inertial reference frame.

The principles of special relativity are remarkably simple. They are very
much simpler than the axioms of Euclid or the principles of operating an auto-
mobile. Yet both Euclid and the automobile have been mastered—perhaps
with insufficient surprise—by generations of ordinary people. Some of the
best minds of the twentieth century struggled with the concepts of relativity,
not because nature is obscure, but simply because man finds it difficult to out-
grow established ways of looking at nature. For us the battle has already been
won. The concepts of relativity can now be expressed simply enough to make
it easy to think correctly—thus “making the bad difficult and the good easy.”’{
The problem of understanding relativity is no longer one of learning but one of
intuition—a practiced way of seeing. When seen with this intuition, a remark-
able number of otherwise incomprehensible experimental results are revealed
to be perfectly natural.f

2. The Inertial Reference Frame

Less than a month after the surrender at Appomattox ended the American
Civil War (1861-65), the French author Jules Verne began writing A Trip
from the Earth to the Moon and A Trip around the Moon.§ Eminent American
cannon designers, so the story goes, cast a great cannon in a pit dug in the
earth of Florida with the cannon muzzle pointing skyward. From this cannon
is fired a 10-ton projectile containing three men and several animals. As the
projectile coasts outward in unpowered flight toward the moon after leaving
the cannon, its passengers walk normally inside the projectile on the side

{Einstein, in a similar connection, in a letter to the architect Le Corbusier.

{For a comprehensive set of references to introductory literature concerning the special theory
of relativity, together with several reprints of articles, see Special Relativity Theory, Selected
Reprints, published for the American Association of Physics Teachers by the American Insti-
tute of Physics, 335 East 45th Street, New York 17, New York, 1963.

' §Paperback edition published by Dover Publications, New York. Hardcover edition pub-
lished in the Great Illustrated Classics Series by Dodd, Mead and Company, New York, 1962.

Simplify: Pick freely
falling laboratory
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Passenger felt weight
in Jules Verne's space
ship

Paradox of passenger
and dog

Passenger is weight-
less in real space ship

Fig. 2. lllustration from an early edi-
tion of A Trip around the Moon.
Satellite is the name of the unfortu-
nate dog.

IT WAS THE BODY OF SATELLITE,

nearer the earth (Fig. 3, A). As the trip continues, the passengers find them-
selves pressed less and less against the floor of the space ship until finally, at
the point where the earth and moon exert equal but opposite gravitational
attraction for all objects, the passengers float free of the floor. Later, as the
ship nears the moon, they walk around once again, but now against the side of
the space ship nearer the moon. Early in the trip one of the dogs in the ship
had died from injuries sustained at takeoff. The passengers had disposed of
the remains of the dog through a scuttle in the side of the space ship, only to
find that the corpse continues to float outside the window during the entire trip.

This story leads to a paradox of crucial importance to relativity. Verne
thought it reasonable that the gravitational attraction of the earth would keep
a passenger pressed against the earth side of the space ship during the early
part of the trip. He also thought it reasonable that the dog should remain next
to the ship, since both ship and dog independently follow the same path
through space. But if the dog floats outside the space ship during the entire
trip, why doesn’t the passenger float around inside the space ship? If the ship
were sawed in half would the passenger, now ‘““outside,” float free of the floor?

Our experience with actual space flights enables us to resolve this paradox.
Jules Verne was in error about the motion of the passenger inside the space
ship. Like the dog outside the ship, the passenger inside independently follows
the same path through space as the space ship itself. Therefore he floats
freely relative to the ship during the entire trip (Fig. 3,B). It is true that the
gravitational field of the earth acts on the passenger. But it also acts on the
space ship. In fact, with respect to the earth, the acceleration of the spaceship
in the gravitational field of the earth is just equal to the acceleration of the



2. The Inertial Reference Frame

AN INCORRECT PREDICTION A THE CORRECT PREDICTION )
= 4,'lMoor'| 7 Moor

t of equal
tational
attraction

Fig.3, A. Jules Verne believed that a passenger ~ Fig 3, B. Correct prediction is that a passenger
in a free projectile would stand on the side of would float with respect to the projectile dur-
the projectile nearest to the earth or moon, ing entire trip. Verne was correct about the
whichever had greatest gravitational attrac- motion of the dog.

tion—but that the dog would float along be-

side the projectile during the entire trip.

passenger in the gravitational field of the earth. Because of the equality of these
accelerations there will be no relative acceleration between passenger and
space ship. Thus the space ship serves as a reference frame (*‘inertial reference
frame”) relative to which the passenger does not experience an acceleration.

To say that the acceleration of the passenger relative to the space ship is
zero is not to say that his velocity relative to it is necessarily also zero. He may
have jumped from the floor or sprung from the side—in which case he will
hurtle across the space and strike the opposite wall. However, when he has
zero initial velocity relative to the ship the situation is particularly interesting,
for he will also have zero velocity relative to it at all later times. He and the
ship will follow identical paths through space. How remarkable that the pas-
senger who cannot see the outside nevertheless moves on this deterministic
orbit. Without a way to control his motion and even with his eyes closed he
will not touch the wall. How could one do better at eliminating gravitational
influences!

A modern space ship carrying a passenger is shot vertically from the earth,
rises, and falls back toward the earth (Fig. 4). (The passenger of an elevator
car experiences a close approximation to this fall when the elevator cable is
cut!) Choose this freely falling space ship as the best possible reference frame
in which to do physics. This reference frame is best because, among other

Concept of inertial
reference frame
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Fig. 4. Space ship in free fall near the  Fig. 5. Railway coach in free fall in Fig. 6. Railway coach in free fall in

earth.

Earth’s pull
nonuniform: large
space ship is not
inertial frame

horizontal position near the earth. vertical position near the earth.

things, the laws of motion of a particle are simple in a falling space vehicle.
A free particle at rest in the vehicle remains at rest in the vehicle. When the
particle is given a gentle push, it moves across the vehicle in a straight line
with constant speed. Further experiments show that a/l the laws of mechanics
can be expressed simply with respect to a falling space ship. We call such a
space ship that rises or falls freely—or more generally moves freely in space—
an inertial reference frame.

Look at the freely falling space ship from the surface of the earth. There is a
simple reason why the free particle at rest relative to the space ship remains at
rest in the space ship. This reason is that, with respect to the surface of the
earth, the particle and the space ship both fall with the same acceleration
(Fig. 4). It is because of this equal acceleration that the relative positions of the
particle and the space ship do not change if the particle is originally at rest in
the space ship.

The definition of an inertial frame requires that no gravitational forces will be
Jelt in it. If such a reference frame is to be a space ship near the earth, it cannot
be a very large one because widely separated particles within it will be dif-
ferently affected by the nonuniform gravitational field of the earth. For ex-
ample, particles released side by side will each be attracted toward the center
of the earth, so they will move closer together as observed from the falling
space ship (Fig. 5). As another example, think of the two particles being
released far apart vertically but directly above one another (Fig. 6). Their
gravitational accelerations toward the earth will be in the same direction.
However the particle nearer the earth will slowly leave the other one behind:
the two particles will move farther apart as the space ship falls. In either of
these instances the laws of mechanics will not be simple in a very large space
ship: the large space ship will not be an inertial frame.
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Now, we want the laws of mechanics to look simple in the space ship.
Therefore we want to eliminate all relative accelerations produced by external
causes— “eliminate” meaning to reduce these accelerations below the limit of
detection so that they will not interfere with the more important accelerations
we wish to study, such as those produced when two particles collide. This can
be done by choosing a space ship that is sufficiently small. The smaller the
space ship, the smaller will be the relative accelerations of objects at different
points in the space ship. Let someone have instruments for the detection of
relative accelerations with any given degree of sensitivity. No matter how fine
that sensitivity, the space ship can always be made so small that these perturb-
ing relative accelerations are too small to be detectable. Within these limits of
sensitivity the space ship is then an inertial reference frame.

When is a space ship or any other vehicle small enough to be called an inertial reference
frame? Or when is the relative acceleration of free particles at opposite ends of the
vehicle too slight to be detected? Analyzing the conditions inside one vehicle will serve
to illustrate these considerations. A railway coach 25 meters long is dropped in a hori-
zontal position from a height of 250 meters onto the surface of the earth (Fig. 5). The
time from release to impact is about 7 seconds, or about 21 X 10° meters of light-travel
time. Let tiny ball bearings be released initially from rest—and in mid-air—at opposite
ends of the coach. Then, during the time of fall, they will move toward each other a
distance of 103 meters—the thickness of 9 pages of this book—because of the differ-
ence in direction of the earth’s gravitational pull upon them (see Ex. 32). As another
example, assume that the same railway coach is dropped in a vertical position, and
that the lower end of the coach is initially 250 meters from the surface of the earth
(Fig. 6). Again two tiny ball bearings are released from rest at opposite ends of the
coach. In this case, during the time of fall, the ball bearings will move apart by a dis-
tance of 2 X 10-3 meters because of the greater gravitational acceleration of the one
nearer the earth. In either of these examples let the measuring equipment in use in the
coach be just short of the sensitivity required to detect the relative motion of the ball
bearings. Then, with equipment of this degree of sensitivity, and with the limited time
of observation, the railway coach—or, to use an earlier example, the freely falling space
ship—serves as an inertial reference frame. When the sensitivity of the measuring
equipment is increased, then the space ship will not serve as an inertial reference frame
unless changes are made. Either the 25-meter domain in which observations are made
must be shortened, or the time given to the observations must be decreased. Or, better,
some appropriate combination of the space and time dimensions of the region under
observation must be cut down. Or, as a final alternative, the whole apparatus must be
shot by a rocket (part ¢ of Ex. 32) up to a region of space where one cannot detect the
“differential in the gravitational acceleration™ between one side of the coach and
another—to use one way of speaking. In another way of speaking, the accelerations of
the particles relative to the coach must be too small to be perceived. These relative
accelerations can be measured from inside the coach without observing anything ex-
ternal. Only when these relative accelerations are too small to be detected is there
a reference frame with respect to which the laws of motion are simple—an inertial
reference frame.

A reference frame is said to be inertial in a certain region of space and time
when, throughout that region of spacetime, and within some specified accuracy,
every test particle that is initially at rest remains at rest, and every test particle
that is initially in motion continues that motion without change in speed or in

Example of space ship
small enough to be
inertial frame

Inertial reference
frame defined
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Region of spacetime
defined

direction. An inertial reference frame is also called a Lorentz reference frame.
In terms of this definition, inertial frames are necessarily always local ones,
that is, inertial in a limited region of spacetime.
“Region of spacetime.” What is the precise meaning of this term? The long
narrow railway coach in the example served as a means to probe spacetime for
a limited stretch of time and in one or another single direction in space. It can
be oriented north-south, or east-west, or up-down. Whatever the orientation,
the relative acceleration of the tiny ball bearings released at the two ends can
be measured. For all three directions—and for all intermediate directions—let
it be found by calculation that the relative drift of the two test particles is half
the minimum detectable amount or less. Then throughout a cube of space 25*'
meters on an edge and for a lapse of time of 7 seconds, test particles moving
every which way depart from straight-line motion by undetectable amounts.

Fig. 7. Modern inertial reference
frame. From Engineering Opportuni-
ties, March 1964. y

In other words, the reference frame is inertial in a region of spacetime with
dimensions

(25 meters X 25 meters X 25 meters of space) X (21 X 10® meters of time)

For a discussion of spacetime regions larger than those of local inertial frames,
see Chapter 3.
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“Test particle.” How small must a particle be to qualify as a test particle?
It must have so little mass that, within some specified accuracy, its presence
will not affect the motion of other nearby particles. In terms of Newtonian
mechanics the gravitational attraction of the test particle for other particles
must be negligible within the accuracy specified. As an example, consider a
particle of mass 10 kilograms. A second and less massive particle placed one-
tenth meter from it and initially at rest will, in less than three minutes, un-
dergo a displacement of 10-* meters. Thus the 10-kilogram object is not—in
this sense—a test particle. A test particle responds to gravitational forces but
it does not itself produce any significant gravitational force.

It would be impossible to define an inertial reference frame if it were not for a remark-
able feature of nature. Particles of different size, shape, and material in the same loca-
tion all fall with the same acceleration toward the earth. If this were not so, an observer
inside a falling space ship would notice a relative acceleration among different particles
even when they are close together; at least some of the particles initially at rest would
not remain at rest; that is, the space ship would not be an inertial reference frame
according to the definition. How sure are we that particles in the same location but of
different substances all fall toward the earth with the same acceleration? According to
legend Galileo dropped balls made of different materials from the Leaning Tower of
Pisa in order to verify this assumption.f In 1922 Baron Roland von E6tvos checked to
an accuracy of five parts in 10? that the earth imparts the same acceleration to wood and
to platinum. More recently Robert H. Dicke has pointed out that the sun is more suit-
able than the earth as source for the gravitational acceleration that one will measure
(see Ex. 35). The alternation in direction of the sun’s pull every 12 hours lends itself to
fantastic amplification by resonance. Cylinders of aluminum and gold experience accel-
erations due to the sun (0.59 X 10~2 meters per second per second) that are the same to
three parts in a hundred thousand million (3 in 10"), according to R. H. Dicke and
Peter G. Roll.f This is one of the most sensitive checks of a fundamental physical
principle in all of physics: the identity of the acceleration produced by gravity in every
kind of test particle.

It follows from this principle that a particle made of any material can be used as a
test particle to determine whether a given reference frame is inertial. A reference frame
that is inertial for one kind of test particle will be inertial for all kinds of test particles.

3. The Principle of Relativity

We describe the motion of test particles with reference to a particular reference
frame in order to determine whether that frame is inertial. The same test
particles and—if they collide—the same collisions may be described with
reference to more than one inertial frame. The one reference frame might be
carried by a space ship built like a hollow cylinder (Fig. 8,A), the other by a
second craft of similar construction just enough smaller to zoom through in-

tOn the question whether Galileo actually performed this experiment, see Physics the Pioneer
Science by Lloyd W. Taylor, (Dover Publications, New York, 1959), Vol. 1, p. 25.

iSee the chapter on experimental relativity by Dicke in Relativity, Groups, and Topology,
edited by C. and B. DeWitt, (Gordon and Breach, New York, 1964), pp. 173-177 or the book
by Dicke The Theoretical Significance of Experimental Relativity (Gordon and Breach, New
York, 1964).

Test particle
defined

Inertial frame is
definable because all
substances fall with
same acceleration
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A. Typical test particle as seen from B. Same test particle as seen froma C. Same test particle as seen from an

one inertial reference frame second inertial reference frame accelerated—and therefore non-
moving with respect to the first inertial—reference frame
one

Fig. 8. Inertial reference frames versus accelerated reference frame.

Overlapping inertial
frames move with uni-
form relative velocity

Relativity: laws of
physics are same in
every inertial frame

side as it catches up with the first and passes it (Fig. 8,B). There is a region of
spacetime common to the interior of both vehicles during the time of passing,
Flying across this region in one direction or another are numerous test parti-
cles. Every track will be straight as plotted with respect to the coordinates of
one reference frame—and also with respect to the other frame— because both
are inertial frames. This straightness in both frames is possible only because
one inertial reference frame has uniform velocity relative to an y second and over-
lapping inertial reference frame. In contrast, if the second rocket ship is pow-
ered so that it accelerates as it passes through the first ship (Fig. 8,0), test
particles will follow curved paths—as observed from this second rocket. If the
curvature of these paths is detectable with given equipment, then such an
accelerated reference frame is a noninertial frame.

In each of two inertial frames in uniform relative motion, every test particle
that is in motion continues that motion without change in speed or in direc-
tion, even though the direction and speed of a given particle will not look the
same in both frames. Indeed, we have defined the inertial frame in such a way
that the following law of mechanics (Newton’s first law) is true in every in-
ertial reference frame: ““A free particle at rest remains at rest, and a free
particle in motion continues that motion without change in speed or in
direction.” There are additional laws of mechanics. Each of these laws also
holds true—according to experiment—in every inertial reference frame.

Do other laws of physics maintain their validity in every inertial frame? In
designing electrical circuits for a jet plane must an electrical engineer use
different circuit laws because the plane will be moving? Must different electro-
magnetic laws of radiation be used in designing a radio transmitter for a
space probe because of the motion of the probe? If a small proton accelerator
together with its targets and particle-detecting equipment is mounted on a
railway flatcar, will the interpretation of collision experiments with protons
require the use of different laws when the flatcar is moving uniformly than
when the flatcar is at rest? As far as we know the answer to these three ques-
tions and others like them is “No.™ In spite of the most diligent search no one
has ever found any violation of the following principle:

All the law's of physics are the same in every inertial reference frame.

We will call this statement the principle of relativity. The principle of rela-
tivity says that once the laws of physics have been derived in one inertial refer-
ence frame, they can be applied without modification in any other inertial
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reference frame. Both the form of the laws of physics and the numerical values
of the physical constants that these laws contain are the samg in every inertial
reference frame. All inertial frames are equivalent in terms of every law of
physics. Expressed in negative terms, the principle of relativity says that rhe
laws of physics cannot provide a way to distinguish one inertial frame from
another—any more than the surveyor’s tape and level give a means to tell
North Star north from magnetic north!

Notice what the principle of relativity does not say. It does not say that the
time between events A and B will appear the same when measured from two
different inertial reference frames. Neither does it say that spatial separation
between the two events will be the same in the two frames. Ordinarily neither
times nor distances will be the same in the two frames—any more than the
northward and eastward components of the separation of gates A and B as
read by the Daytime surveyor are identical to those recorded by the Nighttime
surveyor. In consequence the momentum of a given particle will have a value
in one frame that is different from its value in a second frame. Even the time
rate-of-change of momentum will ordinarily differ between the two frames.
And so will the force. Thus, when studying the motion of a charged particle,
two observers in relative motion will not necessarily find the same values for
the electric field or the magnetic field acting upon this charged particle. The
total force, produced by the electric and magnetic fields together, will differ
between the one inertial reference frame and the other.

The physics that is so different between one frame and the other is neverthe-
less the same in the two frames! Physical quantities differ in value between the
two frames but fulfill identical laws. The time rate-of-change of momentum in
one frame is equal to the total force as measured in that frame (Newton’s
second law). The time rate-of-change of momentum in the second frame is
equal to the total force as measured in that second frame:

time rate-
of-change Ie:qual I (force)
f t l———l laboratory
of momentum/ ,poratory N
frame
ordinarily ordinarily
NOT equal NOT equal
time rate-
of-change II equal II (force)
of momentum /rocket gocket
frame frame

Not only the laws of mechanics but also the laws of electromagnetism and all
other laws of physics hold true as well in one inertial reference frame as in any
other inertial reference frame. This is what it means to say that “the laws of
physics cannot provide a way to distinguish one inertial reference frame from
another.”

The laws of electromagnetism hold true as well in one inertial reference
frame as in any other inertial reference frame. The numerical value of the speed
of light, ¢ = 2.997925 X 10 meters per second, is one of the constants which

What principle of rela-
tivity does NOT say!
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Michelson-Morley
experiment: speed of
light is isotropic in all

inertial frames

appears in the laws of electromagnetism. According to the principle of rela-
tivity this experimental value must be the same in each of two inertial reference
frames in uniform relative motion. Has experiment shown this to be true?
The answer is yes, but the experiments to date are much less sensitive than they
should be for so important a question. For the moment let us pull in our horns
and concentrate on a simpler question which can be answered definitively. The
laws of electromagnetism contain no expressions that depend upon direction.
Therefore one expects to find the round-trip speed of a flash of light to be the
same whether the flash travels north-south or east-west: the speed of light is
isotropic. But now let these same flashes of light be observed from a uniformly
moving rocket. With respect to this rocket, will the round-trip speed of light
not be different for light moving out and back along different lines? The
principle of relativity says no: the speed of light, which is isotropic in one
inertial frame, is also isotropic in all other inertial frames that share the same
spacetime region.

How strange this result is! We know that the speed of sound in air is the
same in all directions if the air is still. But let a stiff wind be blowing—or, to
get the same result, move through the still air in an automobile. Then, with
respect to the automobile, the “downstream speed of sound” is greater than
the “upstream speed of sound.” And a simple calculation shows that both
these speeds are different from the speed of sound measured across the wind.
The round-trip speed of sound measured with respect to the automobile will be
different in different directions. The same result is true for every other form of
wave motion we know about—except that of light! How can we be so sure that
this result is not true for experiments with light? Our assurance is based on a
series of refined experiments beginning with the classic experiment of A. A.
Michelson and E. W. Morley performed after 1880.1 They used the earth
itself as a moving reference frame. (The earth is effectively an inertial frame for
local experiments with light—see Ex. 31.) The earth moves at a speed of about
30 kilometers per second in its orbit about the sun. In essence, Michelson and
Morley compared the round-trip speed of light along the line of the earth’s
motion with the speed of light perpendicular to this line. They repeated this
experiment at different times of the year, when the earth was moving in dif-
ferent directions with respect to the fixed stars. No effect of the motion of the
earth on the relative speed of light in the two perpendicular directions was
observed. From the accuracy of their experiment they determined that the
measured speed of light in the two perpendicular directions was the same to a
sensitivity of one-sixth of the orbital speed of the earth (see Ex. 33). More
recent experiments have reduced this uncertainty to three percent of the orbital
speed of the earth.i The Michelson-Morley experiment and its modern im-
provements tell us that in every inertial frame the round-trip speed of light is
the same in every direction—the speed of light is isozropic in both laboratory
and rocket frames as predicted by the principle of relativity. But the principle
of relativity says more than this. Not only must the speed of light be isotropic
in the laborato'ry frame—and also isotropic in the rocket frame—but also, if

TA. A. Michelson and E. W. Morley, American Journal of Science, 34, 333 (1887).
iT. S. Jaseja, A, Javan, J. Murray, and C. H. Townes, Physical Review, 133, A1221 (1964).



Table 4. Modern tests to answer the question, ‘“Does the round-trip speed of
light differ between one reference frame and another?”

TWO REFERENCE FRAMES '

ONE REFERENCE FRAME
The earth moving in one direction around the sun in, say, January.
ANOTHER REFERENCE FRAME

The earth moving in the opposite direction (with respect to the fixed stars) in July.

EXPERIMENTAL RESULTS

RESULT OF THE MICHELSON-MORLEY EXPERIMENTS
Original experiment

Observers in neither frame (may be the same observer on earth who repeats the
experiment after waiting six months) can detect differences in the round-trip speed of
light in any two perpendicular directions greater than one-sixth of the speed of the
earth in its orbit.

The more modern experiment

Observers in neither frame can detect differences in the round-trip speed of light in
any two perpendicular directions greater than three percent of the speed of the earth
in its orbit.

RESULT OF THE KENNEDY-THORNDIKE EXPERIMENT

The round-trip speed of light is the same in one of the seasonal reference frames de-
fined above as in the other reference frame with a sensitivity of about two meters
per second.

INTERPRETATION OF THE EXPERIMENTS

THE MORE MODERN MICHELSON-MORLEY EXPERIMENT

The speed of the earth in its orbit about the sun is
30 kilometers per second = 1/10,000 of the speed of light

Thus the difference of the round-trip speed of light measured in two perpendicular
directions is
less than 3/100 of 1/10,000 of the speed of light
which is less than 3/1,000,000 of the speed of light

Therefore the principle of relativity is supported by this modern experiment with a
sensitivity of
three parts in a million

THE KENNEDY-THORNDIKE EXPERIMENT

The difference of the round-trip speed of light as measured in the two frames is

less than about 2 meters per second
which is less than 1/100,000,000 of the speed of light

Therefore the principle of relativity is supported by this experiment with a sensitivity of
one part in a hundred million



16

1. The Geometry of Spacetime

Kennedy-Thorndike
experiment: speed of
light has same
numerical value in all
inertial frames

Structure of spacetime
makes LINAC cost
$300,000,000

this principle is correct, the numerical value of this isotropic speed, ¢ =

2.997925 X 10® meters per second, must be the same in the rocket frame as in
the laboratory frame. Can this prediction also be verified by experiment? This
verification was carried out by R. J. Kennedy and E. M. Thorndike about 50
years after Michelson and Morley did their experiment.{ Like Michelson and
Morley, Kennedy and Thorndike used the earth as a moving reference frame.
They tried to detect any variation in the magnitude of the round-trip speed of
light as the earth moved in different directions around the sun at different
times of the year. From the accuracy of their negative results one can conclude
that there is no difference as great as about two meters per second in the
round-trip speed of light as between two reference frames with a relative ve-
locity of 60 kilometers per second (twice the speed of the earth in its orbit; see
Ex. 34). In the Kennedy-Thorndike experiment the standard of length is the
interferometer base itself, a single block of fused quartz kept in a vacuum at a
temperature constant to about a thousandth of a degree. The standard of time
is provided by the characteristic vibration period associated with a particular
green spectral line of a mercury atom. Keeping conditions constant for months
constituted the most important single difficulty—and difference—of this Pasa-
dena, California experiment as contrasted to the Cleveland, Ohio Michelson-
Morley experiment, where the relevant comparisons (one direction as against
another) could be made in the course of a single day. Table 4 summarizes the
conclusions of the Michelson-Morley and the Kennedy-Thorndike experiments.

Although the sensitivity of neither of these experiments is as great as that of
the E6tvos-Dicke experiment (three parts in a hundred thousand million), the
results are nonetheless striking experimental support for the principle of rela-
tivity. Happily, there are plans to improve the sensitivity of the Kennedy-
Thorndike experiment.i This improvement in sensitivity is important. The
measurement of time in meters of light-travel time has meaning only if light
travels one meter in the same time in all frames. The equality of the speed of
light in rocket and laboratory frames provides a simple way (Section 5) to
compare clocks between the two frames. This comparison depends for its
validity on the null result of the Kennedy-Thorndike experiment.

In 1905 the principle of relativity was a shocking heresy, which offended the
intuition and common-sense way of looking at nature of most physicists. It
has taken a long time to become accustomed to the apparently absurd idea
that one particular speed has the same value measured in two overlapping
inertial frames in relative motion. The principle of relativity is used every day
in many fields of physics where it is continually under severe tests. For ex-
ample, the Stanford Linear Electron Accelerator (estimated cost: $300,000,000)
has to be two miles long to push electrons up to a speed that is almost the speed
of light (the difference from the speed of light is only 8 parts in 10"). If the
pre-Einstein Newtonian laws of mechanics were correct, then the accelerator

fR. J. Kennedy and E. M. Thorndike, Physical Review, 42, 400 (1932).

iSee Jaseja, Javan; Murray, and Townes, Physical Review, 133, A1221 (1964). For a careful
analysis of the experimental foundations of special relativity see H. P. Robertson, ‘‘Postulate
versus Observation in the Special Theory of Relativity,” Reviews of Modern Physics, 21, 378
(1949).
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would need to be less than one inch long (Ex. 55) to produce electrons with the
same speed! i

4. The Coordinates of an Event

The inertial reference frame is to a student of physics what the north-south
east-west grid of lines in a township is to a surveyor. The surveyor is con-
cerned with position in space. The student of physics is concerned with location
of an event in space and in time. The Daytime and Nighttime surveyors
could have dispensed with north-south and east-west coordinates and simply
measured the distance between any two gates; but at the start they did not
even know there was any such quantity as ““distance.” In the same way in this
chapter we could have gone about locating events in spacetime solely by meas-
uring the intervals between one event and another, without any regard for
“space” and “‘time” coordinates individually.f However, we have to start as
physics did before 1905, without benefit of any concept of interval. This
concept will force itself upon our attention as the concept of distance forced
itself upon the surveyors. The two men measured north-south and east-west
coordinates in two different coordinate systems. Only later did they see the
connection (‘“invariance of the distance’) between the very different numbers
in their notebooks. Similarly, we will begin with space and time coordinates
of events in the laboratory reference frame, and space and time coordinates of
the same events in the rocket reference frame. Then there will be a firm basis
for concluding that the interval between two events as determined from labora-
tory numbers is identical with the interval between the same two events as
calculated from the very different rocket readings (“‘invariance of the in-
terval™).

The fundamental concept in surveying is a place. The fundamental concept
in physics is an event. An event is specified not only by a place but also by a
time of happening. Some examples of events are: emission of particles or
flashes of light (explosions), reflection or absorption of particles or light
flashes, collisions, and near-collisions called coincidences.

How can one determine the place and time at which an event occurs in a
given inertial reference frame? Think of constructing a frame by assembling
meter sticks into a cubical latticework similar to the “jungle gym” seen on
playgrounds (Fig. 9). At every intersection of this latticework fix a clock.
These clocks can be constructed in any way, but are calibrated in meters of
light-travel time. In Section 1 we discussed how to obtain such a calibration by
bouncing a flash of light back and forth between two mirrors one-half meter
apart. This mirror clock is said to “tick” each time the light flash arrives back
at the first mirror. Between ticks the light flash travels a round-trip distance of
1 meter: Call the unit of time between ticks I meter of light-travel time, or
more simply, I meter of time. The speed of light in conventional units has the
measured value ¢ = 2.997925 X 10° meters per second. Light will travel I

tSuch a treatment is presented by Robert F. Marzke and John A. Wheeler in Gravitation and
Relativity, edited by H.-Y. Chiu and W. F. Hoffmann, (W. A. Benjamin, New York, 1964).

Why use coordinates?

Event defined

Latticework of clocks
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Synchronizing clocks
in lattice
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Fig. 9. Latticework of meter sticks and clocks.

meter in the time, 1 meter/c = 3.335640 X 10-° seconds. Hence I meter of
light-travel time is equal to 3.335640 X 10~° seconds—about 3.3 nanoseconds in
the terminology of high-speed electronic circuits! We assume that every clock
in the latticework, whatever its construction, has been calibrated in meters of
light-travel time.

How are the different clocks in the lattice to be synchronized with one an-
other? As follows: Pick one of the clocks in the lattice as the standard of time
and take it to be the origin of an x, y, z coordinate system. Start this reference
clock with its pointer at # = 0. At this instant let it send out a flash of light that
spreads in all directions. Call this flash of light the reference flash. When the
reference flash gets to a clock 5 meters away, we want that clock to read 5
meters of light-travel time. So an assistant sets that clock to 5 meters of time
long before the experiment begins, kolds it at 5 meters, and releases it only
when the reference flash arrives. When assistants at all the clocks in the lattice
have followed this procedure (each setting his clock to a time in meters equal to
his own distance from the reference clock and starting it when the light flash
arrives), the clocks in the lattice are said to be synchronized.
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There are other possible ways to synchronize clocks. For example, an extra
portable clock could be set to the reference clock at the origin and then
carried around the lattice in order to set the rest of the clocks. However, this
procedure involves a moving clock. We will see later that a moving clock runs
at a different rate as measured by clocks in the lattice than do clocks that re-
main at rest in the lattice. The portable clock will not even agree with the first
one when it is brought back next to it! (Clock paradox, Ex. 27). However, if
we use a moving clock that travels at a speed that is a very small fraction of the
speed of light, it is only slightly in error, and this second method of synchro-
nization will give very nearly the same result as the first—and standard—
method. Moreover the error can be made as small as desired by carrying the
portable clock about sufficiently slowly.

The latticework of synchronized clocks can be used to determine the loca-
tion and time at which any given event occurs. The /ocation of the event will be
taken to be the position of the clock nearest the event. The time of the event
will be taken to be the time recorded on the lattice clock nearest the event. The
coordinates of an event will then consist of four numbers: three numbers that
specify the spatial position of the clock nearest the event and the time (in
meters) when the event occured as recorded by that clock. The clocks, if they
are installed by a foresighted experimenter, will be recording clocks. Each will
be able to detect the occurrence of an event (passage of a light flash or particle).
Each will punch onto a card the nature of the event, the time of the event and
the location of the clock. The cards can then be collected from all the clocks
and later analyzed, perhaps by automatic equipment.

Why a lattice built of rods that are one meter long? When a clock in this
lattice punches out a card, one will not know whether the event so recorded
is 0.4 meters to the left of the clock, for instance, or 0.2 meters to the right.
The location of the event will be uncertain by some substantial fraction
of a meter. The time of the event will also be unknown within some appre-
ciable fraction of a meter of light-travel time. This accuracy, however, is quite
adequate for observing the passage of a rocket. It is extravagantly good for
measurements on planetary orbits—it would even be reasonable to increase
the lattice spacing from 1 meter to hundreds of meters. Neither 100 meters nor
1 meter is a lattice spacing suitable for studying the tracks of particles from a
high-energy accelerator. There a centimeter or a millimeter would be more
appropriate. The location and time of an event can be determined to whatever
accuracy is desired by constructing a lattice with sufficiently small spacing.

In relativity we often speak about “the observer.” Where is this observer?
At one place or all over the place? The word “‘observer™ is a shorthand way of
speaking about the whole collection of recording clocks associated with one
inertial frame of reference. No one real observer could easily do what we ask
of the “ideal observer™ in our analysis of relativity. So it is best to think of the
observer as the man who goes around picking up the punched cards turned out
by all the recording clocks in his employ. This is the sophisticated sense in which
we will hereafter be using the phrase “the observer finds such and such.”

The clocks reveal the motion of a particle through the lattice: each clock
that the particle passes punches out the time of passage as well as the space
coordinate of this event. How can the path of the particle be described in

Latticework used to
measure the four
coordinates of event

Lattice spacing
depends on scale of
physics under study

Observer defined

Clock records reveal
motion of particle
through lattice
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Verifying that lattice
furnishes inertial frame

Laboratory and rocket
frames; x axes coincide

terms of numbers? By recording the coordinates of these events along this
path. Differences between the coordinates of successive events reveal the veloc-
ity of the particle. The conventional units for speed, v, are meters per second.
However, when time is measured in meters of light-travel time, then speed is
expressed in meters of distance covered per meter of time. To avoid confusion,
speed expressed in meters per meter will be represented by the Greek letter
beta, 8. A flash of light moves one meter of distance in one meter of light-
travel time, or, Bu.t = 1. The speed of other particles in meters per meter
represents a fraction of the speed of light. In other words 8 = v/c. Here and
hereafter ¢ represents the speed of light.

From the motion of test particles through the latticework of clocks—or
rather from the records of coincidences punched out by the recording clocks—
we can determine whether the latticework constitutes an inertial reference
frame. If the records show (a) that—within some specified accuracy—a test
particle moves consecutively past clocks that lie in a straight line, (b) that the
speed B of the test particle calculated from the same records is constant—
again, within some specified accuracy—and, (c) that the same results are
true for as many test-particle paths as the most industrious observer cares to
trace throughout the given region of space and time, then the lattice consti-
tutes an inertial reference frame throughout that region of spacetime.

Once again we have described the motion of test particles with respect to a
particular reference frame in order to determine whether that frame is inertial.
The same test particles and—if they collide—the same collisions may be
described with reference to one inertial frame as well as another. Let two
reference frames be two different latticeworks of meter sticks and clocks, one
moving uniformly relative to the other, and in such a way that their x axes
coincide. Call one of these frames the laboratory frame and the other—moving
in the positive x direction relative to the laboratory frame—the rocket frame
(Figs. 10 and 11). The rocket is unpowered and coasts along with constant
velocity relative to the laboratory. Let the rocket and laboratory latticeworks
be overlapping in the sense that there is a region of spacetime common to both
frames (as described in Section 3 and Fig. 8). Test particles move through this
common region of spacetime. From the motion of these test particles as re-
corded by his own clocks, an observer in each frame verifies that his frame is
inertial.

Fig. 10. Laboratory and rocket frames. The two latticeworks intermeshed a second ago.



