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60 Exercises

INTRODUCTION TO THE EXERCISES OF CHAPTER 1

Important areas of current research can be analyzed
very simply using the theory of relativity. This analy-
sis depends heavily upon a physical intuition, which
develops with experience. Such experience cannot be
obtained in the laboratory—simple experiments in
relativity are difficult and expensive because the speed
of light is so great. As alternatives to simple experi-
ments, the following exercises involve a wide range of
physical consequences of the properties of spacetime.
These properties of spacetime recur here over and
over again in different contexts:

paradoxes

puzzles

derivations

technological applications
estimates

precise calculations
philosophical difficulties

The text of the chapter has presented all formal
tools necessary to answer these exercises, but intui-
tion—a practiced way of seeing—is best developed
without hurry. For this reason it will prove useful to
continue to do more and more of these exercises in

relativity after one has moved on to material outside
this book. Those who wish to cover the essential ma-
terial in the least possible time may limit themselves to
the exercises whose titles are set in boldface type in the
list beginning below.

The mathematical manipulations in the exercises are
very brief: only a few answers will take more than
five lines to write down. On the other hand, the ex-
ercises will require some “rumination time.’’ Unstarred
exercises should require the least time; those marked
with a single asterisk are more difficult; those marked
with double asterisks are suitable for graduate stu-
dents in physics.

WHEELER’S FIRST MORAL PRINCIPLE. Never make a
caleulation until you know the answer. Make an esti-
mate before every calculation, try a simple physical
argument (symmetry! invariance! conservation!) be-
fore every derivation, guess the answer to every puzzle.
Courage: no one else needs to know what the guess is.
Therefore make it quickly, by instinct. A right guess
reinforces this instinct. A wrong guess brings the re-
freshment of surprise. In either case life as a spacetime
expert, however long, is more fun!

A. THE SPACETIME INTERVAL (Text sections 5, 6, 7)

wN =

. Simultaneity

B

*

(=)}

. The expanding universe

)

. Temporal order of events

. Space and time—a worked example
. Practical synchronization of clocks
Relations between events

Proper time in communication

8. Data-collecting and decision-making

B. THE LORENTZ TRANSFORMATION (Text sections 8 and 9)

10. Time dilation

9. Lorentz contraction—a worked example

11. Relative synchronization of clocks

12. Euclidean analogies
13. Lorentz contraction II
14. Time dilation II

15. Lorentz transformation equations with time in seconds
*16. Derivation of the Lorentz transformation equations
*17. Proper distance and proper time
*18. The place where both agree
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*19. Transformation of angles

*20. Transformation of y velocity '
*%21. Transformation of velocity directions
*%22. The headlight effect

C. PUZZLES AND PARADOXES

23. Einstein’s train paradox—a worked example
24. Einstein puzzler
*25. The pole and barn paradox
*%*26. Space war
*27. The clock paradox
*28. Things that move faster than light

D. BACKGROUND

29. Synchronization by a traveling clock—a worked example
30. Time dilation and construction of clocks
31. Earthbound inertial reference frames

*32. Size of an inertial frame

*33. The Michelson-Morley experiment

*34. The Kennedy-Thorndike experiment

*35. The Dicke experiment

*36. Down with relativity!

E. APPROXIMATIONS AT LOW VELOCITY

37. Euclidean analogy—a worked example
38. The Galilean transformation
*30, Limits of accuracy of a Galilean transformation
*40. Collisions Newtonian and relativistic—and the domain within which the two
predictions agree to one percent
*41. Examples of the limits of Newtonian mechanics

F. SPACETIME PHYSICS: MORE OBSERVATIONS

42. Time dilation with u-mesons—a worked example
43. Time dilation with 7*-mesons
*44. Aberration of starlight
45. Fizeau experiment
46. Cerenkov radiation
*47. Deflection of starlight by the sun

G. GEOMETRIC INTERPRETATION

48. Geometric interpretation
49. The clock paradox II—a worked example

H. FREE-FOR-ALL!

50. Contraction or rotation?
**51. Clock paradox III
*52. The tilted meter stick
*53. The meter-stick paradox
**54. The thin man and the grid



62 Ex.1 Space and Time

A. THE SPACETIME INTERVAL (Text Sections 5, 6, 7)

1. Space and time—a worked example

Two events occur at the same place in the laboratory
frame of reference and are separated in time by 3
seconds. (a) What is the spatial distance between
these two events in a rocket frame in which the events
are separated in time by 5 seconds? (b) What is the
relative speed B, of the rocket and laboratory frames?

Solution : (a) The spacetime interval between these
two events has the same value measured in either
frame of reference

(A02 — (Ax)? = (ar): — (Ax'y:
From the statement of the problem

Ax =0
Ar = 3 (seconds) X ¢ (meters/second)
= 9 X 108 meters
Ax’ = to be found
At" = 5 (seconds) X ¢ (meters/second)
= 15 X 10® meters

Substitute these values into the expression for the
interval

81 X 10" — 0 = 225 X 10 — (Ax')?
From this equation find

(Ax')? = 144 X 10 meters?
or
Ax" = 12 X 10® meters

(b) In the laboratory frame the two events occur
at the same place. In the rocket frame this labora-
tory “place” has moved 12 X 10® meters in 5
seconds—or in 15 X 10° meters of light-travel
time. Therefore the relative speed of the two
frames is

AX'/AY = (12 X 109/(15 X 10°) = 4/5

2. Practical synchronization of clocks

You are an observer stationed near a clock with
spatial coordinates x = 6 meters, y = 8 meters, and
z = 0 meters in the laboratory frame. You wish to
synchronize your clock with the one at the origin using
the reference flash. Describe in detail and with num-
bers how to proceed.

3. Relations between events

Events A, B, and C are plotted in the laboratory
spacetime diagram of Fig. 34. Answer the following
questions for the pair of events A and B.

(a) Is the interval between the two events timelike,
lightlike, or spacelike?

(b) What is the proper time (or proper distance) be-
tween the two events?

(c) Is it possible that one of the events caused the
other event?

Answer the same questions for the pair of events
A and C.

Answer the same questions for the pair of events
C and B.

Fig. 34. What are the relations among the events A, B,
and C?

4. Simultaneity

“A hits B and simultaneously one hundred million
miles away C hits D.” Explain in a sentence or two
how special relativity teaches us to restate or qualify
this statement.

5. Temporal order of events

“Event G occurred before event H.” Prove that the
temporal order of two events in the laboratory frame
is the same as in all rocket frames if and only if the two
events have either a timelike or a lightlike separation.

6.* The expanding universe

(@) A giant bomb explodes in otherwise empty
space. What is the nature of the motion of one frag-
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Fig. 35. Calculation of the time
Al eception Detween arrival at ob-
server of consecutive flashes from
receding emitter.

ment relative to another? And how can this relative
motion be detected? Discussion: Imagine each frag-
ment equipped with a beacon that gives off flashes of
light at regular, known intervals Ar of time as meas-
ured in its own frame of reference (proper time!).
Knowing this interval between flashes, what method of
detection can an observer on one fragment employ to
determine the velocity p—relative to him—of any
other fragment? Assume that he uses, in making this
determination, (1) the known proper time Ar be-
tween flashes and (2) the time Atreception between the
arrival of consecutive flashes at his position. (Note:
This is not equal to the time Az in his frame between
the emission of the two flashes from the receding
emitter; see Fig. 35.) Derive a formula for g in terms
of A7 and Afreception. How will the measured recession
velocity depend upon the distance from one’s own
fragment to the fragment at which one is looking?
(Note: In any given time in any given frame, frag-
ments evidently travel distances in that frame from the
point of explosion that are in direct proportion to
their velocities in that frame!)

(b) How can observation of the light from stars be
used to verify that the universe is expanding? Discus-
sion: Atoms in hot stars give off light of different
frequencies characteristic of these atoms (‘“‘spectral
lines’”). The observed period of the light in each spec-
tral line from starlight can be measured on earth.
From the partern of spectral lines the kind of atom
emitting the light can be identified. The same kind of
atom can then be excited in the laboratory to emit
light while at rest and the proper period of the light in
any spectral line can be measured. Use the results of
part (a) to describe how the observed period of light in
one spectral line from starlight can be compared to the

proper period of light in the same spectral line from
atoms at rest in the laboratory to give the velocity of
recession of the star that emits the light. This ob-
served change in period due to the velocity of the
source is called the Doppler shift. (For a more de-
tailed treatment see Ex. 75 of Chap. 2 and the exer-
cises which follow it.) If the universe began in a
gigantic explosion, how must the observed velocities
of recession of different stars at different distances
compare with one another? Slowing down during
expansion—by gravitational attraction or otherwise—
is to be neglected here but is considered in more com-
plete treatments (Ex. 80).

7. Proper time in communication

A flash of light is emitted from the sun and is
absorbed on the moon. ““The proper time between the
emission of this flash and its absorption is equal to
zero.” True or false? Is the proper time between the
two events (emission and absorption) equal to zero if
the flash is reflected back and forth between mirrors
on the moon before being absorbed? (Careful!) A
flash of light is emitted on earth and travels through air
directly to another spot on the earth, where it is
absorbed. (The speed of light in air is slightly less
than c.) Is the proper time between the emission of
this flash and its absorption equal to zero?

8. Data-collecting and decision-making

We have used a latticework of recording clocks to
describe events. The position of an event is the posi-
tion of the clock nearest to the event, and the time of
an event is the time recorded on that clock. Physics
deals with the study of the relations between events. If
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the data-analysis center is located at the origin of the
latticework of clocks, what is the lag time (in that
frame) between data available for analysis at this
center and data already recorded on clocks at a dis-
tance R from that center? The clock at x = 6 X 10¢
meters, y = 8 X 10 meters, and z = 0 meters records
the passage of a meteor at 41 X 10° meters of time.

The clock at x = 3 X 10° meters, y = 4 X 10° meters,
and z = 0 meters records the passage of the same
metecr at 47 X 10° meters of time. The observers in
the data-analysis center require 3 seconds to take
evasive action. If the data above are sent to them by
light flash and are displayed instantly upon arrival,
will they have time to protect themselves?

B. THE LORENTZ TRANSFORMATION (Text Sections 8 and 9)

9. Lorentz contraction—a worked example

A meter stick is attached to a rocket. The meter
stick is observed from the laboratory frame of refer-
ence (laboratory framework of rods and clocks). In
what way will the findings of the laboratory observer
about the length of the meter stick contrast with
those predicted by pre-relativity physics? We break
this broad question down into four parts:

(a) How can this question about length be trans-
lated into a question about the separation of two
events? Remarks: Each end of the meter stick traces
out a world line through spacetime. But one world
line is an infinite succession of events. So how is one
going to pick out, in a reasonable way, exactly two
events that will give the desired information about the
apparent length of the meter stick?

Solution : Select the following two events for at-
tention. A: One end of the meter stick flashes
past a laboratory clock just as that clock reads
noontime. B: The other end of the meter stick
flashes past another laboratory clock when it too
reads noontime. Discussion: One must measure
the location of both ends of the moving meter
stick at the same time in the laboratory frame.
Otherwise there would not be a well defined pair
of laboratory points between which to carry out
the length measurement. The two events are thus
simultaneous in the laboratory frame of refer-
ence (Af = 0). They may or may not be simul-
taneous ir: the rocket frame (A7 may or may not
be zero). No matter! The meter stick is at rest
in the rocket frame. In that frame the two ends
may be located at leisure.

(b) When the meter stick points along the x axis
(direction of motion) of the rocket so that the separa-
tion of the two ends in the rocket frame is Ax’ = 1
meter, what length is observed in the laboratory
frame?

Solution: The length is the separation in space of
the two events A and B in the laboratory frame

(3%) Ax = Ax’/cosh 8, = Ax'(1 — B,2)!/2

This length is less than one meter. The shortening
is called the Lorentz contraction. Discussion: The
Lorentz transformation (Eqgs. 37) connects separa-
tions in the laboratory frame with separations in
the rocket frame by the equations

Ax" =  Ax cosh 6, — At sinh 6,

At = — Ax si .+ At cosh 8,
(39) t’ x sinh 6, + Af cos

Ay’ = Ay

Azli= Az

The two events are simultaneous in the labora-
tory frame (Az = 0). Therefore Ax’ = Ax cosh 6.,
from which the answer follows. Note that A¢ is
not equal to zero; that is, the events A and B are
not simultaneous as recorded in the rocket frame.
This difference in time between events at the two
ends of the meter stick raises no questions in the
minds of the rocket workers as to the length of
the meter stick. To them it is at rest and it is one
meter long. Neither are they troubled that the
laboratory observers record the length as short-
ened (““Lorentz contracted”). “Why not?” they
say. “The laboratory observers marked down the
positions of the two ends of the meter stick at
times, 74" and 73’, that we know to be different.
How could they help but get a length different
from 1 meter?”

(c) When the meter stick points along the y axis
(perpendicular to the direction of motion) of the
rocket frame, so that the separation of the two ends
in the rocket frame is Ay’ = 1 meter, what length is
observed in the laboratory frame?

Solution: The length is the separation in space of
the two events A and B in the laboratory frame

Ay = Ay’
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This length is 1 meter. There is no shortening of
dimensions perpendicular to the direction of mo-
tion. Discussion: Note that the two events are
now simultaneous not only in the laboratory
frame (Ar = 0), but also in the rocket frame
(At = 0; see Egs. 39). Thus it is not surprising to
the rocket workers that the laboratory observers
should agree with them about the length of the
meter stick.

(d) Reconsider the conclusion of part b. How can
one possibly accept the result that a rocket meter
stick appears to be shorter than one meter to labora-
tory observers? If this conclusion were true, would we
not have a way to distinguish the physics in the rocket
frame (where meter sticks have their standard length)
from the physics in the laboratory (where the same
meter sticks are recorded as shortened)? And if so,
does not the reasoning of relativity destroy the very
foundation principle of relativity? This principle
states that one cannot distinguish between one inertial
frame and another by any difference between the
physics in the two frames. Have we not found a most
striking difference between the physics in the two
frames?

Solution: Yes, there is a difference between the
x dimensions recorded in the two frames; but
there is no difference between the physics in the
two frames. A meter stick that is at rest relative
to the rocket and that points along the direction
of motion, is recorded as shorter than 1 meter in
the laboratory. However, a meter stick that is at
rest in the laboratory and that is parallel to the
direction of motion is recorded as also shortened
by the rocket workers. Objection: What pre-
posterous story is this! I will stick to simple logic
and defy all this relativity nonsense. You say that
a rocket meter stick may be recorded in the
laboratory as a half meter. Then you must agree
that a length of a half meter in the laboratory is
recorded as a full meter in the rocket frame. So
rocket dimensions are longer than laboratory
dimensions—along the direction of motion. Phys-
ics is as different as it could well be between the
two frames. I would have no trouble at all telling
whether I was in the laboratory frame or the
rocket frame. Principle of relativity! What delu-
sion! Reply: Perhaps all of us find Einstein and
Lorentz disturbing at a first encounter because we
have had so little experience with objects moving
at really high velocities. Perhaps you will feel
happier with the principle of relativity if you see

Fig. 36. A pasture extends for
a greater distance in the x di-
rection than in the x’ direction.

Fig. 37. Another field extends
for a greater distance in the x’
direction than in the x direc-

tion.

its analog in Euclidean geometry. Of course
there are some differences between the formula
(AL)? = (Ax)? + (Ay)?in Euclidean geometry and
(A7)? = (Af)? — (Ax)? in Lorentz geometry. How-
ever, the question whether distances are different
in two frames clearly worries you more than the
question whether the distance in the new frame is
less than in the old frame (Lorentz contraction in
Lorentz geometry) or greater (length increase in
Euclidean geometry). So look at Fig. 36. A pas-
ture that extends for the distance Ax’ in the x’
direction evidently extends for a greater distance
in the x direction

(40)

On the other hand, look now at Fig. 37 (see
Ex. 48 for space and time analogs of Figs. 36 and
37). Here there is another field, which extends for
the distance Ax in the x direction. However, its
extension in the x’ direction is greater

(41) Ax' = Ax/cos 6,

Ax = Ax'[cos 6,
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Surely you accept these results. You do not even
worry about any inconsistency between formulas
40 and 41. You know as well as anyone that the
Ax’s in the two formulas refer to different meas-
urements on different fields. So perhaps you will
be willing to believe that the length of a meter
stick that is at rest relative to a rocket will be
recorded as less than a meter in the laboratory,
whereas a meter stick that is at rest in the labora-
tory will be less than a meter to the recorders on
the rocket. Response: I now agree that there is no
logical inconsistency in what you have been tell-
ing me. But perhaps you will go a step further and
really prove to me what you have just now said
about a laboratory meter stick being recorded as
less than a meter in the rocket frame. Answer:
Solve the Lorentz transformation equations (Egs.
39) for the coordinates in the laboratory frame in
terms of the coordinates in the rocket frame; or
merely interchange the role of the primed and un-
primed coordinates in those equation, and re-
verse the sign of the velocity; or look up Egs. 36,
inverse to Egs. 39; in any case, write down the
relations

Ax = Ax' cosh 6, + At sinh 6,
At = Ax' sinh 6, + A? cosh 6,
Ay = Ay’
Az = AZ

42)

Our new meter stick is at rest in the laboratory
frame. It is moving as viewed from the rocket
frame. Consequently a determination of its length
in the rocket frame requires us to have in the
rocket frame two fiducial points: the locations of
the two ends of the meter stick at the same
rocket time. Thus Ar” = 0. From the first of Egs.
42 we find immediately

(43)

The length recorded in the rocket frame is less
than one meter when the meter stick is at rest in
the laboratory—as was to be shown.

Ax" = Ax/cosh 6, = Ax(1 — )12

10. Time dilation

A clock is carried by a rocket (Fig. 38). The clock is
observed from the laboratory frame of reference
(laboratory latticework of rods and clocks). In what
way will the findings of the laboratory observer about
the time readings of the traveling clock contrast with
those predicted by pre-relativity physics? Break this
question down into four parts.

(a) How can this question about time lapse be
translated into a question about the separation of two
events?

(b) Let the rocket clock read one meter of light-
travel time between the two events chosen in part a,
so that the lapse of time recorded in the rocket frame
is Ar’ = 1 meter. Show that the time lapse observed in
the laboratory frame is given by the expression

(44) At = Ar' cosh 0, = Ar'/(1 — pYV2

This time lapse is more than one meter of light-travel
time. Such lengthening is called. time dilation (‘to
dilate” means “to stretch”).

(¢) How can one possibly accept the conclusion of
part b that one meter of rocket time appears longer
than one meter to laboratory observers? Does not this
result give one a way to distinguish the physics in the
rocket frame (where clocks run at their standard rate)
from the physics in the laboratory frame (where the
same clocks are recorded as running slow)? Therefore
does not this reasoning violate the principle of rela-
tivity (Sect. 3) on which rests the whole theory of
relativity?

(d) Go one step further and show that one meter of
time as recorded by a clock carried in the laboratory
frame (A7 = 1 meter) is recorded as more than -one
meter of time by observers in the rocket frame, ac-
cording to the formula

(45) A" = At cosh 6, = Ar/(1 — gY)'/2

In what way does this result verify the symmetry be-
tween laboratory and rocket frames required by the
principle of relativity?

Fig. 38. A method for compar-
ing several laboratory clocks
with one rocket clock.
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11. Relative synchronization of clocks

(a) Show that if two events occur simultaneously
and at the same place in the laboratory frame they will
occur simultaneously in all rocket frames. Show that
if two events occur simultaneously in the laboratory
frame but not at the same position on the x axis of the
laboratory frame, they will nor be simultaneous as
observed in any moving rocket frame. The fact that
observers in relative motion do not always agree
whether two events are simultaneous is called the
relativity of simultaneity.

(b) Two events occur simultaneously and at the
same x coordinate in the laboratory frame, but are
separated by the y and z coordinates Ay and Az
Show that these two events are also simultaneous in
the rocket frame.

(c) Use the Lorentz transformation equation to
show that at 7 = 0 in the laboratory frame the clocks
along the positive x axis in the rocket frame appear to
be set behind those in the laboratory frame, with
clocks farther from the origin set farther behind; and
that clocks along the negative x axis in the rocket
frame appear to be set ahead of those in the labora-
tory frame, with clocks farther from the origin set
farther ahead, according to the equation

(46)

=

—x sinh 8, = —xB,/(1 — BAHV?

(d) Use the inverse Lorentz transformation equa-
tion to show that at # = 0 in the rocket frame the
clocks along the positive x axis in the laboratory
frame appear to be set ahead of those in the rocket
frame, with clocks farther from the origin set farther
ahead; and that clocks along the negative x axis in the
laboratory frame appear to be set behind those in the
rocket frame, with clocks farther from the origin set
farther behind, according to the equation

(CY)) t = +x' sinh 8, = 4+x' B,/(1 — B2

The fact that neither of two observers in relative mo-
tion agrees that the reference event and the reading of
zero time on all clocks of the other frame occur
simultaneously is called the relative synchronization
of clocks.

(e) The difference in sign between the equations in
parts ¢ and d seems to imply an asymmetry between
frames that might be used to tell them apart—which
would violate the principle of relativity. Show that if
an observer in either frame chooses his positive x axis
to lie in the direction of motion of the other frame,
then physical measurements on the synchronization of

clocks will give results in the two frames which are

indistinguishable. In other words, the two frames
themselves are indistinguishable using this method.
The difference in sign between the above equations is
due to an arbitrary—and asymmetric—choice of a
common direction for both positive x axes.

(f) The foregoing results are sometimes summarized
by stating that a “‘rocket observer sees the laboratory
clocks to be out of synchronism with one another.”
Explain what is wrong with this way of stating the
matter. Show that a single rocket observer is not
enough to make the required measurements. What is a
sharp, clean, legalistically correct, and clear (even if
considerably longer!) way to state the same result?

12. Euclidean analogies

(a) A straight rod lies in the xy plane of a Euclidean
coordinate system. Draw a diagram showing the rod
in the xy plane; label the projections of this rod on the
x, y and x’, y’ axes. Spell out an explicit analogy be-
tween the x components of the length of this rod as
measured in two rotated Euclidean coordinate sys-
tems and the different lengths of a moving rod ob-
served in the laboratory frame and in the rocket frame
in which the rod is at rest.

(b) Spell out an explicit analogy between time
dilation and the y components of length of the rod
of part a as observed in two rotated Euclidean co-
ordinate systems. What are the Euclidean and Lorentz
invariants?

(c) Spell out an explicit analogy between the rela-
tive synchronization of clocks and the case of two
rotated Euclidean coordinate systems in which points
on the positive x axis of one coordinate system have,
say, a negative y coordinate in the other coordinate
system (more negative for points farther from the
common origin).

13. Lorentz contraction Il

A meter stick lies along the x’ axis and at rest in the
rocket frame. Show that an observer in the laboratory
frame will conclude that the meter stick has undergone
Lorentz contraction if he measures how long it takes
the meter stick to pass one of his clocks and multi-
plies this result by the relative velocity of the two
frames.

14. Time dilation Il

Two events occur at the same place but at different
times in the rocket frame. Show that an observer in the
laboratory frame will conclude that the time between
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the two events has been dilated if he measures the dis-
tance between them in the laboratory frame and
divides this distance by the relative velocity of the
two frames.

15. Lorentz transformation equations
with time in seconds

If time is expressed in seconds (written with a sub-
script: 7..) and if v, represents the relative speed be-
tween laboratory and rocket frames expressed in
meters per second, show that the Lorentz transforma-
tion equations become

5 Xo—"0yt
x' = x cosh 0, — Ctse sinh 8, = ——— =
rd —v2c?)Y

(48)
ey fece i = r_s_v_c T (Lr/c_'z_)f
t'see = —(x/c) sinh 8, + fe. cosh 8, = a4 = ol

where
v;/c = tanh 6,.

Write down the inverse Lorentz transformation equa-
tions using the same notation.

16.* Derivation of the Lorentz
transformation equations

Derive the transformation equations of Lorentz
along new lines (due to Einstein) as follows. Let the
rocket move uniformly with velocity g, in the x direc-
tion of the laboratory. The coordinates x’, y’, z’, t’ of
any event, such as an explosion, in the rocket reference
frame have a one-to-one relation with the coordinates
x, ¥, z, t of the same event measured in the laboratory
frame. Moreover, y = )’ and z = z’ (perpendicular
distances are the same). As for the relation between
x, rand x’, ¢, assume a linear relationship

x = ax' 4 bt’

t=ex"+ft'
with four coefficients a, b, e, f that (1) are unknown,
(2) are independent of x, 7 and x’, 7, and (3) depend
only upon the relative velocity 8, of the two frames of
reference.

Find the ratios bja, ela, f]a as functions of velocity
B, using the following three arguments and these
arguments alone: (1) A flash of light that starts at
x=0,7=0 (" =0, = 0) moves to the right at the
velocity of light (x = ¢; x’ =) in both frames of
reference. (2) A flash of light that starts at x = 0,
t=0(" =0, = 0) moves to the left at the velocity
of light (x = —1; x’ = —1') in both frames of refer-
ence. (3) The point x’ = 0 has the velocity 8, in the
laboratory frame.

Now use as the fourth piece of information, the
invariance of the interval (Section 5): (4) 2 — x> =
(') — (x')? to find the constant « itself and thus all
four coefficients a, b, e, f. Do the results obtained in
this way agree with Lorentz’s values for the transfor-
mation coefficients?

17.* Proper distance and proper time

(a) Two events P and Q have a spacelike separa-
tion. Show that a rocket frame can be found in which
the two events occur at the same time. Also show that
in this rocket frame the distance between the two
events is equal to the proper distance o between them.
(One method: assume that such a rocket frame exists
and then use the Lorentz transformation equations to
show that the relative velocity of this rocket frame is
less than the speed of light (8, < 1), thus justifying the
assumption made.)

(b) Two events P and R have a timelike separation.
Show that a rocket frame can be found in which the
two events occur at the same place. Also show that in
this rocket frame the time between the two events is
equal to the proper time 7 between them.

18." The place where both agree

At any instant there is just one plane in which both
the laboratory and the rocket clocks agree. Show that
the velocity of this plane in the laboratory frame is
equal to tanh (6,/2), where 6, is the relative velocity
parameter between laboratory and rocket frames.

19.* Transformation of angles

A meter stick lies at rest in the rocket frame and
makes an angle ¢’ with the x axis. What angle ¢ does
the same meter stick make with the x axis of the
laboratory frame? What is the length of the meter
stick as observed in the laboratory frame? Next as-
sume that the directions of electric-field lines around a
point charge transform in the same way as the direc-
tions of meter sticks that lie along these lines. Draw
qualitatively the electric-field lines due to an isolated
positive point charge at rest in the rocket frame as
seen in (a) the rocket frame and (b) the laboratory
frame. What conclusions follow concerning the forces
exerted, in the laboratory frame, on stationary test
charges that surround a charge moving in that frame?

20.” Transformation of y velocity

A particle moves with uniform speed g» = Ay’/Ar’
along the )’ axis of the rocket frame. Transform the
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components of y and ¢ displacements using the
Lorentz transformation equations. Show that the
x component and the y component of the velocity of
this particle in the laboratory frame are given by the
expressions

8= = tanh 4,

() Bv = Bv’/cosh 6,

21.** Transformation of velocity directions

A particle moves with a velocity 8’ in the x'y’ plane
of the rocket frame in a direction that makes an angle
¢' with the x’ axis. Find the angle that the velocity
vector of this particle makes with the x axis of the
laboratory frame. (Hint: Transform displacements
rather than velocities.) Why does this angle differ from
that found in Ex. 19? Contrast the two results when
the relative velocity between the rocket and laboratory
frames is very great.

C. PUZZLES AND PARADOXES

23. Einstein’s train paradox—
a worked example

Three men (A, O, and B) are riding on a train at a
velocity 8, close to the value one. A is in front, O is at
the middle, and B is at the rear (Fig. 39). A fourth
man O’ is standing beside the rails. At the very instant
O passes O’ it happens that two flash-bulb signals
coming from A and B reach O and O’. Who emitted
the signal first? Using only the fact that the speed of
light is finite and independent of the source velocity,
show that O and O’ give different answers to this
question. Having answered this qualitative question,
evaluate the quantitative difference between the times
of emission of the flashes from A and B as observed in
the frame of reference of the train (Afss) and the
frame of reference of O’ (Atpa’), either by the Lorentz
transformation or by other means.

Fig. 39. Did rider A or rider B emit his flash first?

22.** The headlight effect

A flash of light is emitted at an angle ¢’ with
respect to the x’ axis of the rocket frame. Show that
the angle ¢ that the direction of this flash makes with
respect to the x axis of the laboratory frame is given
by the equation

(50) cos ¢’ + B

1 4 B, cos ¢

Show that your answer to the previous exercise gives
the same result when the velocity g’ is given the value
one. Now consider a particle at rest in the rocket
frame that emits light uniformly in all directions.
Consider the 50 percent of this light that goes into the
forward hemisphere in the rocket frame. Also, assume
that the rocket moves very fast relative to the labora-
tory. Show that in the laboratory frame this light is
concentrated in a narrow forward cone whose axis lies
in the direction of motion of the particle. This effect is
called the headlight effect.

COS ¢ =

Solution: Observers A and B are at rest with re-
spect to observer O. They are also equidistant
from observer O, as he can verify with a meter
stick at his leisure. Therefore flashes from A and
B require equal times to arrive at O. Flashes from
A and B are observed to arrive at O at the same
time. Observer O concludes, therefore, that ob-
servers A and B emitted their flashes at the same
time: Afps = 0.

Observer O’ standing beside the rails draws an
entirely different conclusion. He reasons as fol-
lows: “The two flashes arrived when the middle
of the train (observer O) was passing me. There-
fore the two flashes must both have been emitted
before the middle of the train reached me. Before
the middle of the train reached me, observer A
was nearer fo me than was observer B. Thus
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light from B had farther to travel to reach me—
and therefore rook a longer time to reach me—
than did light from A. But both flashes arrived at
the same time. Therefore observer B must have
emitted his flash before observer A emitted his
flash.” (8t'sx = t's — 1’y < 0) In summary, ob-
server O’ beside the tracks concludes that B
emitted his flash before A emitted his flash, while
observer O riding on the train concludes that A
and B emitted their flashes at the same time.

What is the observed difference of times be-
tween the emissions, A and B, of these flashes?
In the unprimed train frame the flashes are
emitted simultaneously, so Az = 0. The separa-
tion between the emissions is Ax = Axpy = xp —
Xs = L where L is the length of the train. There-
fore in the primed frame (which moves to the
right relative to the unprimed train frame, as is
conventional in the primed-unprimed notation)
the time between emissions can be found from
the Lorentz transformation equation

At =
At

— Ax sinh 6, + At cosh 6,
—Lsinh 6, = —Lg,/(1 — g2)\/2

The minus sign shows that observer B (who is on
the positive x’ axis) emitted his flash at an
earlier—a more negative—rocket time than ob-
server A emitted his flash.

24. Einstein puzzler

When Einstein was a boy, he mulled over the follow-
ing puzzler: A runner looks at himself in a mirror that
he holds at arm’s length in front of him. If he runs with
nearly the speed of light, will he be able to see himself
in the mirror? Analyze this question in terms of
relativity.

25." The pole and barn paradox

A worried student writes, “Relativity must be
wrong. Consider a 20-meter pole carried so fast in the
direction of its length that it appears to be only 10
meters long in the laboratory frame of reference.
Therefore at some instant the pole can be entirely en-
closed in a barn 10 meters long (Fig. 40). However,
look at the same situation from the frame of reference
of the runner. To him the barn appears to be con-
tracted to half its length. How can a 20-meter pole fit
into a 5-meter barn? Does not this unbelievable con-
clusion prove that relativity contains ‘somewhere a
fundamental logical inconsistency?”

Write a reply to the worried student explaining

Fig. 41. Two rocket ships passing at high speed.

Fig. 40. Fast runner with “20-meter pole” enclosed in **10-
meter barn.” In the next instant he will burst through the
back door, which is made of paper.

clearly and carefully how the pole and barn are
treated by relativity without contradiction. (Clear up
the paradox by making two carefully labeled space-
time diagrams, one an xr diagram, the other an xt'
diagram. Take the “event” Q coinciding with A to
be at the origin of both diagrams. In both plot the
world lines of A, B, P, and Q. Pay attention to the
scale of both diagrams. Label both diagrams with the
times (in meters) at which Q coincides with B. Do the
same for the times at which P coincides with B. Calcu-
late these times, using the equations of the Lorentz
transformation or some other method.)

26."* Space war

Two rockets of equal rest length are passing ‘“‘head
on” at relativistic speeds. Observer O has a gun in the
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tail of his rocket pointing perpendicular to the direc-
tion of relative motion. He fires the gun when points a
and a’ coincide:

Fig. 42. In frame of o one expects a bullet fired when a
coincides with a’ to miss other ship.

In the frame of O the other rocket ship is Lorentz con-
tracted. Therefore O expects his bullet to miss the
other rocket. But in the frame of the other observer,
O/, it is the rocket ship of O that appears to be Lorentz
contracted. Therefore when points a and a’ coincide,
observer O’ sees

Fig. 43. In frame of o’ one expects a bullet fired when a
coincides with @’ to hit other ship.

Does the bullet actually hit or miss? Discuss your
answer: Pinpoint the looseness of the language used
to state the problem, also the error in one diagram.

27.* The clock paradoxf

Version I; other versions in Exs. 49, 51, and 81

On their twenty-first birthday, Peter leaves his twin
Paul behind on the earth and goes off in the x direction
for seven years of his time (2.2 X 10® seconds or
6.6 X 10' meters of time) at (24/25) = 0.96 the speed
of light, then reverses direction and in another seven
years of his time returns at the same speed. (a) What
is Peter’s age on his return? (b) Make a spacetime
diagram showing the motion of Peter. Indicate on it
the x and 7 coordinates of the turn-around point and
of the point of reunion. For simplicity idealize the
earth as an inertial frame, adopt this inertial frame in
the construction of the diagram, and take the origin
to be the event of departure. (¢) How old is Paul at the
moment of reunion?

28." Things that move faster than lighti

The Lorentz transformation equations have no
meaning if the relative velocity of the two frames is
greater than the velocity of light. This is taken to imply
that mass, energy, and information (messages) cannot
be moved from place to place faster than the speed of
light. Check this implication in the following examples.

(a) The scissors paradox. A very long straight rod,
which is inclined at an angle ¢ with the x axis, moves
downward with uniform speed gv (Fig. 44). Find the
speed Bx of the point of intersection A of the lower
edge of the stick with the x axis. Can this speed be
greater than the speed of light? Can it be used to
transmit a message from the origin to someone far out
on the x axis?

(b) Suppose that the same rod is initially at rest with
the point of intersection A at the origin. The region of
the rod which is centered on the origin is struck by the
downward blow of a hammer. The point of intersec-
tion moves to the right. Can this motion of the point
of intersection be used to transmit a message faster
than the speed of light?

tFor reprints of several articles on the clock paradox,
together with references to many more articles, see Special
Relativity Theory, Selected Reprints, published for the
American Association of Physics Teachers by the American
Institute of Physics, 335 East 45th Street, New York 17,
New York, 1963.

1See Milton A. Rothman, “Things that go Faster than
Light,” Scientific American 203, 142 (July, 1960).
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Fig. 44. Can the point of intersection A move with a speed greater than the speed of light?

(©) A very powerful searchlight is rotated rapidly in
such a way that its beam sweeps out a flat plane.
Observers A and B are on the plane and each the same
distance from the searchlight but not near to each
other. How far from the searchlight must A and B be
in order that the searchlight beam will sweep from A
to B faster than a light signal could travel from A to B?
Before they took their positions, the two observers
were given the following instructions:

To A: “When you see the searchlight beam, fire a

bullet at B.”
To B: “When you see the searchlight beam, duck
because A has fired a bullet at you.”
Under these circumstances, has not a warning gone
from A to B with a speed faster than that of light?

(d) The manufacturers of some oscilloscopes claim
writing speeds in excess of the speed of light. Is this
possible?

D. BACKGROUND

29. Synchronization by a traveling
clock—a worked example

Mr. Engelsberg does not approve of our method of
synchronizing clocks by light flashes (Sect. 4). “I can
synchronize my clocks in any way I choose,” he says.
Is he right? Mr. Engelsberg wishes to synchronize two
identical clocks, named Big Ben and Little Ben, which
are separated by one million miles (a little more than
1.5 X 10° meters) and which have zero relative ve-
locity. He uses a third clock, identical in construction
to the first two, that travels with constant velocity be-
tween them. As his moving clock passes Big Ben, it is
set to read the same time as Big Ben. When the moving
clock passes Little Ben, that outpost tlock is set to
read the same time as the traveling clock. “Now Big
Ben and Little Ben are synchronized,” says Mr.

Engelsberg. Is he right? How much out of synchro-
nism are Big and Little Ben as measured by a lattice-
work of clocks—at rest relative to them both—that has
been synchronized in the conventional manner using
light flashes? Evaluate this lack of synchronism when
the traveling clock that Mr. Engelsberg uses moves at
one hundred thousand miles per hour (4.5 X 10
meters per second). Is there any earthly reason—aside
from matters of personal preference—why we all
should not adopt the method of synchronization used
by Mr. Engelsberg?

Solution: Start with the numerical part of the
solution. A latticework of clocks at rest with re-
spect to Big Ben and Little Ben—a latticework
whose clocks are synchronized by the standard
method using light flashes—can be used to make
observations of the traveling clock. Relative to
this latticework the traveling clock moves at
v = 4.5 X 10* meters per second, or 8 = vjc =
4.5 X 10* meters per second

3 X 10% meters per second

= 1.5 X 10~* meters

of distance per meter of light-travel time. At this
rate it covers the distance between Big Ben and
Little Ben in a time, A7 = 10"* meters of light-
travel time. Comparison of readings of the lattice
clocks with the traveling clock as it passes these
~in turn will show the phenomenon of time dilation
(Ex. 10). With respect to the lattice clocks the
traveling clock will run slow by a factor (1 — 822,
Therefore, the time, A#, of travel between Big
Ben and Little Ben as recorded on the traveling
clock is
At = A(1 — g2
= A1 — 2.25 X 10-8)1/2

Use the binomial expansion

A —32=1—(3/2)—(1/8)8— --- =1 — §/2
(for small 5)
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to give an approximate answer

At = At — (1/2)2.25 X 1078 At
or

(51) At — At = —1.12 X 1078 X 103
= —1.12 X 105 meters = —0.4 X 10~? seconds

Set Little Ben by the traveling clock and then
compare its reading with nearby clocks of the
lattice. Little Ben will then read earlier than the
lattice clocks by 0.4 millisecond.

There is a more direct way to find the lapse of
time Af’ recorded by the traveling clock on its
way from Big Ben to Little Ben. The route is
straight. The lapse of traveling-clock time along
this world line is therefore equal to the proper
length of the world line itself between the two
events; that is, equal to the interval between the
passages past Big and Little Ben:

A’ = A(proper time) = (interval)
= [(a02 — (Axyp”

This calculation gives the result for the time dis-
crepancy between laboratory clocks and the
traveling clock

At — At = [(AD? — (Ax)FV2 — At
in complete agreement with Eq. 51.

Now return to consider the validity of the
traveling-clock method of defining synchroniza-
tion of clocks. Mr. Engelsberg is free to define
synchronization in any way he wishes. However,
if he uses the traveling-clock method to synchro-
nize Big Ben and Little Ben he will find the follow-
ing difficulties: (1) The settings one gives to
laboratory clocks by this method of synchroni-
zation will depend on the speed of the traveling
clock. Let the traveling clock move ten times
faster than the speed given in the example above.
Then the discrepancy between Little Ben and
nearby lattice clocks will be not 0.4 milliseconds
but about 40 milliseconds. Two Little Bens side
by side that are synchronized using traveling
clocks moving at different speeds will not agree
with each other! (2) Even if traveling clocks are
limited to a given speed, the results of this
method of synchronization will depend on the
path of the traveling clock. The longer the path
taken by the traveling clock at its fixed speed, the
earlier will Little Ben read as compared to nearby
lattice clocks. (3) If the traveling clock makes a
round trip from Big Ben, it will not be synchro-

nized with Big Ben on its return! (The clock
paragox, Ex. 27.) There are other inconveniences
that result from Mr. Engelsberg’s method of
synchronization, but these are enough to show
its inappropriateness for any simple description
of what goes on in spacetime.

30. Time dilation and
construction of clocks

In describing the phenomenon of time dilation in
Ex. 10 we made no distinction between spring clocks,
quartz crystal clocks, biological clocks (aging), atomic
clocks, radioactive clocks, and a clock in which the
ticking element is a pulse of light flashing back and
forth between two mirrors. Let all these clocks be ad-
justed to run at the same rate when at rest in the
rocket frame. When these clocks fly past standard
clocks in the laboratory frame, show that the phe-
nomenon of time dilation (Ex. 10) occurs quite inde-
pendently of the inner workings of the clocks. (Dis-
cussion: How does it happen that the construction of
the clocks never came into discussion before? With
flashes of light flying back and forth from one clock
to another for purposes of synchronization, is any
clock machinery really needed? Did one ever need
anything more than a first light pulse, say from an
electric spark, and half-silvered mirrors at measured
locations here and there (Fig. 45) to create definite
time delays?)

—t

Time

"t 1M —>— 1M —>— Im —>
Spark

i |

Fig. 45. Measurement of time using no clocks. Dashed line
is world line of half-silvered mirror.

31. Earthbound inertial reference frames

A reference frame is inertial within some region of
space and time if test particles at rest remain at rest
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within some specified accuracy throughout that region
of spacetime. A spaceship in free fall near the earth
has been shown to be effectively an inertial frame for
time periods of a few seconds. Many experiments in-
volving fast-moving particles and light itself are ob-
served in earthbound laboratories, which are not in
free fall! The force of gravity is present in an earth-
bound laboratory. Nevertheless, some of these experi-
ments require so little time that a test particle released
as the experiment begins does not fall very far before
the experiment is over. For the purposes of many ex-
periments, therefore, the earthbound laboratory is an
inertial frame with considerable accuracy.

(@) An elementary particle with a velocity 0.96 that
of light passes through a cubical spark chamber with
edges 1. meter long. How far will a Separate test
particle released from rest fall in the gravitational
field of the earth in this time? Compare your answer

with the dimensions of an atomic nucleus (a few times
107"* meters). Summarize by stating the dimensions of
the spacetime region in which the laboratory or earth-
bound frame is idealized to be inertial and the specified
accuracy. How big would the spark chamber have to
be in order that the separate test particle would drop a
measurable amount from rest in the time that an ele-
mentary particle of speed 0.96 ¢ traverses the chamber?

(b) In the Michelson-Morley experiment (Ex. 33) a
beam of light is reflected back and forth between pairs
of mirrors about 2 meters apart so that it travels a
total distance of 22 meters. How far will a test particle
fall from rest in the gravitational field of the earth
during the time that a particular photon traverses the
Michelson-Morley equipment? To what accuracy is
the earthbound frame inertial in the spacetime region
in which the Michelson-Morley experiment is carried
out?

32.* Size of an inertial frame

How large can a given region of space be (Ax =
Ay = Az = L, meters), how long can it be studied
(Ar, meters!), and how close can it be to a center of
gravitational attraction, before a detectable discrep-
ancy, ¢, from an ideal inertial reference system
shows up?

(@) One kind of discrepancy: relative acceleration
perpendicular to the line of attraction.
(1) Special case. Two ball bearings are released
from rest from a common height of 250 meters

above the earth and 25 meters apart (Fig. 46).
Show that they will move closer together by a
distance of about 10~ meter before striking the
earth. (Analyze by the method of similar tri-
angles or by some other method. This is the
example treated on page 9 of the text.) The
time to fall 250 meters at an acceleration of 9.8
meters per second per second is about 7 seconds
or 21 X 10° meters of light-travel time. In sum-
mary, a falling railway coach can be treated as
an inertial reference system under these con-
ditions:

Conditions that are adequate to guarantee that discrepancy
JSfrom ideal inertial frame cannot be detected

¢ (smallest discrepancy
given instruments

can detect) r (distance from

center of earth)

Ax (horizontal

Ay and Az
(spread of region
in other two
directions)

At (time of

spread) observation)

e > 1 X 1073 meter L=

6.4 X 10° meters

L < 25 meters

Assumed zero in
analysis; therefore
have to be assumed
zero here in default
of further analysis

(part ¢)

At <
21 X 103 meters
(7 seconds)

Ax =
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Fig. 46. Ball bearings released side by side near the earth
move closer together as they descend. (Figure is not drawn
to scale.)

(b)

(2) More general case. Test particle B is dis-
placed Ax relative to test particle A. They have
the same distance r from the center of attrac-
tion, and are studied for a time Ar. Denote by
a the common acceleration of the two particles
towards the center of attraction in meters per
second per second, or by a* = a/c? the value of
the same acceleration measured in meters of
distance per meter of time per meter of time.
Show that the acceleration of particle B relative
to A (Aa®)* (meters of distance per meter of
time per meter of time) is given by the formula

(52) (Aa®)* = —(Ax/r)a*

(Assume that the relevant angles are so small
that the sine and the tangent and the angle itself
can all be identified with one another.)
Another kind of discrepancy: relative accelera-
tion parallel to the line of attraction.

(1) General case. Test particle B is displaced by
the amount Az relative to A and parallel to r.
Therefore B is further away from the center of
attraction than A and experiences a smaller
attraction. Consequently B is left behind A—
or, as seen by an observer on A, B has a relative
acceleration in the positive z direction. Show
that this relative acceleration (in meters of dis-
tance per meter of time per meter of time) is

(53) (Aa?)* = +(2 Az/r) a*

©

(Hint: Use the fact that «* falls off according to
Newton’s inverse square law of gravitation;
thus, a* = constant/r?, Evaluate at r and at
r + Az and take the difference. Take advantage
of the fact that Az is very small (a few meters)
compared to r (thousands of kilometers) to
simplify the result!)

(2) Special case. (Page 9 of text.) One test
particle is 250 meters above the surface of the
earth, the other 275 meters. How much will the
25 meter separation between the particles be
increased in the approximately 7 seconds it
takes for the first particle to hit the ground?
(Hint: By what factor do the expressions for
A in part b,1, and Aa* in part a,2, differ from
each other?) Use your result to complete—or,
if you wish, to revise—the table in part a,l.
Case in which the region of experimentation is
far from the center of the earth.

The space corporation increases the scope of the
experiments with test particles and light rays.
The research group finds that the region used for
previous experiments is not large enough for the
new program and 7 seconds is not long enough.
Management agrees to its recommendation for a
space Ax = 200 meters, Ay = 200 meters, Az =
100 meters and a time of 100 seconds, with the
same tolerance as before, e = 1 X 107 meters =
1 millimeter. To how many earth radii from the
center of the earth must the equipment be
boosted by rockets to make the departures from
ideality less than the tolerable upper limit? (Some
possible questions to ask along the way: How
does a* vary with the distance r from the center
of the earth? How do (Aa®)* and (Aa?)* vary
with 7?2 How do Ax and Az depend upon (Ag?)*
and (Aa?)* and the time At?)

Fig. 47. Ball bearings released one above the other near
the earth move farther apart as they descend. (Figure
is not drawn to scale.)
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33." The Michelson-Morley experiment}

(@) An airplane moves with air speed ¢ (not the
speed of light) from point A to point B on the earth. A
stiff wind of speed v is blowing from B toward A.
Show that the time for a round trip from A to B and
back to A under these circumstances is greater by a
factor 1/(1 —v?/c? than the corresponding round-
trip time in still air. Paradox: The wind helps on one
leg of the flight as well as hinders on the other: Why,
therefore, is the round-trip time not the same in the
presence of wind as in still air? Give a simple physical

TA. A. Michelson and E. W. Morley, Amegrican Journal
of Science, 34, 333 (1887). The logical position of the ex-
periment in the theory of relativity is outlined by H. P.
Robertson, in Reviews of Modern Physics, 21, 378 (1949).

Fig. 48. Michelson-Morley inter-
ferometer mounted on a rotating
marble slab.

reason for this difference. What happens when the
wind speed is nearly equal to the speed of the air-
plane?

(b) The same airplane now makes a round trip be-
tween A and C. The distance between A and C is the
same as the distance from A to B, but the line from A
to C is perpendicular to the line from A to B, so that
in moving between A and C the plane flies across the
wind. Show that the round-trip time between A and C
under these circumstances is greater by a factor
1/(1 — v*c?)' than the corresponding round-trip time
in still air.

(¢) Two airplanes with the same air speed ¢ start
from A at the same time. One travels from A to B and
back to A, flying first against and then with the wind
(wind speed v). The other travels from A to C and back
to A, flying across the wind. Which one will arrive
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home first, and what will be the difference in their ar-
rival times? Using the binomial theorem show that if
v < ¢, then an approximate expression for this time

v?
c?

difference is Az = L < >, where L is the round-trip

2c

distance between A and B (and between A and C).

(d) The South Pole Air Station is the supply depot
for research huts on a circle of 300-kilometer radius
centered on the air station. Every Monday many
supply planes start simultaneously from the station
and fly radially in all directions at the same altitude.
Each plane drops supplies and mail to one of the re-
search huts and flies directly home. A Fussbudget with
a stopwatch stands on the hill overlooking the air
station. He notices that the planes do not all return at
the same time. This discrepancy perplexes him be-
cause he knows from careful measurement that (1)
the distance from the air station to every research hut
is the same, (2) every plane flies with the same air
speed as every other plane—300 kilometers per hour,
and (3) every plane travels in a straight line over the
ground from station to hut and back. The Fussbudget
finally decides that the discrepancy is due to the wind
at the high altitude at which the planes fly. With his
stopwatch he measures the time from the return of the
first plane to the return of the last plane to be 4 sec-
onds. What is the wind speed at the altitude where the
planes fly? What can the Fussbudget say about the
direction of this wind?

(e) In their famous experiment Michelson and
Morley attempted to detect the so-called ether drift—
the motion of the earth through the “ether,” with re-
spect to which light was supposed to have the velocity
¢. They compared the round-trip times for light to
travel equal distances parallel and perpendicular to the
direction of motion of the earth around the sun. They
reflected the light back and forth between nearly
parallel mirrors. (This would correspond to part c if
each airplane made repeated round trips.) By this
means they were able to use a total round-trip length
of 22 meters for each path. If the “ether” is at rest with
respect to the sun, and if the earth moves at 30 X 10°
meters per second in its path around the sun, what is
the approximate difference in time of return between
light flashes that are emitted simultaneously and
travel along the two perpendicular paths? Even with
the instruments of today, the difference predicted by
the ether-drift hypothesis would be too small to
measure directly, and the following method was used
instead.

(f) The original Michelson-Morley interferometer is
diagramed in Fig. 48. Nearly monochromatic light
(light of a single frequency) enters through the lens at
a. Some of the light is reflected by the half-silvered
mirror at » and the rest of the light continues toward
d. Both beams are reflected back and forth until they
reach mirrors e and e, respectively, where each beam
is reflected back upon itself and retraces its path to
mirror b. At mirror b parts of each beam combine to
enter telescope f together. The transparent piece of
glass at ¢, of the same dimensions as the half-silvered
mirror b, is inserted so that both beams pass the same
number of times (three times) through this thickness of
glass on their way to telescope f.

Suppose that the perpendicular path lengths are
exactly equal and the instrument is at rest with respect
to the ether. Then monochromatic light from the two
paths that leaves mirror b in some relative phase will
return to mirror b in the same phase. Under these
circumstances the waves entering telescope f will add
and the image in this telescope will be bright. On the
other hand, if one of the beams has been delayed a
time corresponding to one-half period of the light, then
it will arrive at mirror 4 one-half period later, and the
waves entering the telescope will cancel, so the image
in the telescope will be dark. If one beam is retarded a
time corresponding to one whole period, the telescope
image will be bright, and so forth. What time interval
corresponds to one period of the light? Michelson and
Morley used sodium light of wavelength 5890 ang-
stroms (one angstrom is equal to 107 meter). From
the equations vA = cand » = 1/T show that one period
of sodium light corresponds to about 2 X 107%
seconds.

Now there is no way to “turn off”” the alleged ether
drift, adjust the apparatus, and then turn on the
alleged ether drift again. Instead of this, Michelson
and Morley floated their interferometer in a pool of
mercury and rotated it slowly about its center like a
phonograph record while observing the image in the
telescope (Fig. 48). In this way if light is delayed on
either path when the instrument is oriented in a certain
direction, light on the other path will be delayed by the
same amount of time when the instrument has rotated
90 degrees. Hence the total change in delay time be-
tween the two paths observed as the interferometer
rotates should be rwice the difference calculated using
the expression derived in part c.

By simple refinements of this method Michelson and
Morley were able to show that the time change be-
tween the two paths as the instrument rotated corre-
sponded to less than one one-hundredth of the shift
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from one dark image in the telescope to the next dark
image. Show that this result implies that the motion of
the ether at the surface of the earth—if it exists at all—
is less than one sixth of the speed of the earth in its
orbit. In order to eliminate the possibility that the
ether was flowing past the sun at the same rate as the
earth was moving its orbit, they repeated the experi-
ment at intervals of three months, always with nega-
tive results.

(g) Does the Michelson-Morley experiment, by it-
self, disprove the theory that light is propagated
through an ether? Can the ether theory be modified to
agree with the results of this experiment? How? What
further experiment can be used to test the modified
theory?

34.* The Kennedy-Thorndike experiment

The Michelson-Morley experiment was designed to
detect any motion of the earth relative to a hypo-
thetical fluid —the ether—a medium in which light was
supposed to move with characteristic speed ¢. No such
relative motion of earth and ether was detected. Partly
as a result of this experiment the concept of ether has
since been discarded. In the modern view, light re-
quires no medium for its transmission.

What significance does the negative result of the
Michelson-Morley experiment have for us who do not
believe in the ether theory of light propagation?
Simply this: (1) The round-trip speed of light meas-
ured on earth is the same in every direction—the
speed of light is isotropic. (2) The speed of light is
isotropic not only when the earth moves in one direc-
tion around the sun in, say, January (call the earth
with this motion the *‘laboratory frame’’); but also
when the earth moves in the opposite direction around
the sun six months later, in July (call the earth with
this motion the “rocket frame”). (3) The generaliza-
lization of this result to any pair of inertial frames in
relative motion is contained in the statement, rhe
round-trip speed of light is isotropic both in the labora-
tory frame and in the rocket frame.

This result leaves an important question unan-
swered: Does the round-trip speed of light—which is
isotropic in both laboratory and rocket frames—also
have the same numerical value in laboratory and rocket
frames? The assumption that this speed has the same
numerical value in both frames played a central role in

TThe report of the original experiment is found in the
Physical Review, 42, 400, (1932). The logical position of
the experiment in the theory of relativity is outlined by H.
P. Robertson in the Reviews of Modern Physics, 21, 378
(1949).

demonstrating the invariance of the interval (Section
5). But is this assumption valid?

(a) An experiment to test the assumption of the
equality of the round-trip speed of light in two inertial
frames in relative motion was conducted in 1932 by
Roy J. Kennedy and Edward M. Thorndike. The ex-
periment uses an interferometer with arms of unequal
length (Fig. 49). Assume that one arm of the inter-
ferometer is A/ longer than the other arm. Show that a
flash of light entering the apparatus will take a time
2Al/c longer to complete the round trip along the
longer arm than along the shorter arm. The difference
in length A/ used by Kennedy and Thorndike was
approximately 16 centimeters. What is the approximate
difference in time for the round trip of a light flash
along the alternative paths?

(b) Instead of a pulse of light, Kennedy and Thorn-
dike used continuous monochromatic light of period
T = 1.820 X 10" seconds (A = 5461 angstroms) from
a mercury source. Light that traverses the longer arm
of the interferometer will return approximately how
many periods » later than light that traverses the
shorter arm? If in the actual experiment the number of
periods is an integer, the reunited light from the two
arms will add and the field of view seen through the
telescope will be bright. In contrast, if in the actual
experiment the number of periods is a half-integer, the
reunited light from the two arms will cancel and the
field of view of the telescope will be dark.

(c) The earth continues on its path around the sun.
Six months later the earth has reversed the direction of
its velocity relative to the fixed stars. In this new frame
of reference will the round-trip speed of light have the
same numerical value ¢ as in the original frame of
reference? One can rewrite the answer to part b for the
original frame of reference in the form

(54) ¢ = (2/n)(Al[T)

where A/ is the difference in length between the two
interferometer arms, 7'is the time for one period of the
atomic light source, and » is the number of periods
that elapse between the return of the light on the
shorter path and the return of the light on the longer
path. Suppose that as the earth orbits the sun no shift
is observed in the telescope field of view from, say,
light toward dark. This means that » is observed to be
constant. What would this hypothetical result tell
about the numerical value ¢ of the speed of light? Point
out the standards of distance and time used in de-
termining this result, as they appear in Eq. 54. Quartz
has the greatest stability of dimension of any known
material. Atomic time standards have proved to be



Ex. 34 The Kennedy-Thorndike Experiment 79

Fig. 49. Schematic diagram of apparatus used for the
Kennedy-Thorndike experiment. Parts of the interferom-
eter have been labeled with letters corresponding to those
used in describing the Michelson-Morley interferometer
(Ex. 33). The experimenters went to great lengths to insure
the optical and mechanical stability of their apparatus.
The interferometer is mounted on a plate of quartz, which
changes dimension very little when temperature changes.
The interferometer is enclosed in a vacuum jacket so that
changes in atmospheric pressure will not alter the effective
optical path length of the interferometer arms (slightly
different speed of light at. different atmospheric pressure!).

The inner vacuum jacket is surrounded by an outer water
jacket in which the water is kept at a temperature that varies
less than +0.001 degree centigrade. The entire apparatus
shown in the figure is enclosed in a small darkroom (not
shown) maintained at a temperature constant within a few
hundredths of a degree. The small darkroom is in turn en-
closed in a larger darkroom whose temperature is constant
within a few tenths of a degree. The overall size of the
apparatus can be judged from the fact that the difference
in length of the two arms of the interferometer (length be
compared with length be,) is 16 centimeters.
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the most dependable earth-bound timekeeping mech-
anisms.

(d) In order to carry out the experiment outlined in
the preceding paragraphs, Kennedy and Thorndike
would have had to keep their interferometer operating
perfectly for half a year while continuously observing
the field of view through the telescope. Uninterrupted
operation for so long a time was not feasible. The
actual durations of their observations varied from
eight days to a month. There were several such
periods of observation at three-month intervals. From
the data obtained in these periods, Kennedy and
Thorndike were able to estimate that over a single six-
month observation the number of periods » of rela-
tive delay would vary by less than the fraction 3/1000
of one period. Take the differential of Eq. 54 to find
the largest fractional change de/c of the round-trip
speed of light between the two frames consistent with
this estimated change in » (frame No. 1—the “labora-
tory” frame—and frame No. 2—the *“‘rocket” frame—
being in the present analysis the earth itself at two
different times of year, with a relative velocity twice
the speed of the earth in its orbit: 2 X 30 kilometers
per second).

Historical note : At the time of the Michelson-Morley
experiment in 1887 no one was ready for the idea that
physics—including the speed of light—is the same in
every inertial frame of reference. According to today’s
standard Einstein interpretation it seems obvious that
both the Michelson-Morley and the Kennedy-Thorn-
dike experiments should give null results. However,
when Kennedy and Thorndike made their measure-
ments in 1932, two alternatives to the Einstein theory
were open to consideration (designated here as theory
A and theory B). Both A and B assumed the old idea
of an absolute space, or *‘ether,” in which light has the
speed ¢. Both A and B explained the zero fringe shift
in the Michelson-Morley experiment by saying that all
matter that moves at a velocity v relative to “absolute
space” undergoes a shrinkage of its space dimensions in
the direction of motion to a new length equal to
(1 — v*/¢?)'? times the old length (“‘Lorentz-FitzGerald
contraction hypothesis”). The two theories differed as
to the effect of ““motion through absolute space’ on the
running rate of a clock, Theory A said, no effect.
Theory B said that a standard seconds clock moving
through absolute space at velocity v has a time between
ticks of (1 — »%/¢%)V% seconds. On theory B the ratio
Al/T in Eq. 54 will not be affected by the velocity of the
clock, and the Kennedy-Thorndike experiment will
give a null result, as observed (“complicated explana-
tion for simple effect™). On theory A the ratio A//T in

Eq. 54 will be multiplied by the factor (1 — vy*/c*)'* at a
time of year when the “velocity of the earth relative to
absolute space” is v;; and multiplied by (1 — v2?/c)V?
at a time of year when this velocity is ve. Thus the
fringes should shift from one time of year (v; =
Vorbital + Uun) to another time of year (vs = vorbital —
v.un) Unless by accident the sun happened to have “zero
velocity relative to absolute space” —an accident judged
so unlikely as not to provide an acceptable explanation
of the observed null effect. Thus the Kennedy-Thorn-
dike experiment ruled out theory A (length contraction
alone) but allowed theory B (length contraction plus
time contraction)—and also allowed the much simpler
Einstein theory of equivalence of all inertial reference
frames.

The “sensitivity” of the Kennedy-Thorndike experi-
ment depends upon the theory under consideration. In
the context of theory A the observations set an upper
limit of about 15 kilometers per second to the “speed
of the sun through absolute space” (sensitivity re-
ported in the Kennedy-Thorndike paper). In the con-
text of Einstein’s theory the observations say that the
round-trip speed of light has the same numerical
magnitude—within an error of about 2 meters per
second—in inertial frames of reference having a rela-
tive velocity of 60 kilometers per second.

35.* The Dicke experimentt

(a) The Leaning Tower of Pisa is about 55 meters
high. Galileo says, ‘‘the variation of speed in air be-
tween balls of gold, lead, copper, porphyry, and other
heavy materials is so slight that in a fall of 100 cubits
[about 46 meters] a ball of gold would surely not out-
strip one of copper by as much as four fingers. Having
observed this I came to the conclusion that in a
medium totally devoid of resistance all bodies would
fall with the same speed.”] Taking four fingers to be
equal to seven centimeters, find the maximum frac-
tional difference in the acceleration of gravity Ag/g be-
tween balls of gold and copper that would be con-

tR. H. Dicke, “The Eotvos Experiment,” Scientific
American, 205, 84 (December, 1961). See also P, G. Roll,
R. Krotkov, and R. H. Dicke, Annals of Physics, 26, 442
(1964). The first of these articles is a popular exposition
written early in the course of the present experiment. The
second article reports the final results of the experiment
and takez on added interest because of its account of the
elaborate precautions required to insure that no influence
that might affect the experiment was disregarded.

1Galileo Galilei, Dialogues Concerning Two New Sciences,
translated by Henry Crew and Alfonso de Salvio (North-
western University Press, Evanston, Illinois, 1950).



