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Ex. 35 The Dicke Experiment 81

Fig. 50. Nearby massive sphere results in static deflection of
plumb line from vertical.

sistent with Galileo’s experimental result. The result
of the more modern Dicke experiment is that this
fraction is not greater than 3 X 107, Assume that
the fraction has the more recently determined maxi-
mum value. Determine how far behind the first ball
the second one will be when the first reaches the
ground if they are dropped simultaneously from the
top of a 46-meter vacuum chamber. Under these
same circumstances, how far would balls of different
material have to fall in a vacuum in a uniform gravita-
tional field of 10 meters per second per second for one
ball to lag behind the other one by a distance of 1
millimeter? Compare this distance with that of the
moon from the earth (3.8 X 10® meters). Clearly the
Dicke experiment was not carried out using falling
balls!

(b) A plumb bob of mass m hangs on the end of a
long line from the ceiling of a closed room (Fig. 50). A
very massive sphere at one side of the closed room
exerts a horizontal gravitational force mg, on the
plumb bob, where g, = GM/R? M being the mass of
the large sphere, and R the distance between plumb
bob and the center of the sphere. This horizontal
force causes a static deflection of the plumb line from
the vertical by the small angle e. (Similar practical ex-
ample: In northern India the mass of the Himalaya
Mountains results in a slight sideways deflection of
plumb lines, causing difficulties in precise surveying!)
The sphere is now rolled around to a corresponding
position on the other side of the room (Fig. 51) caus-
ing a static deflection of the plumb by an angle ¢ of the
same magnitude but in the opposite direction. Now
the angle e is very small. (Deflection due to the

Fig. 51. Rolling the sphere to the other side results in static
deflection of plumb line in opposite direction.

Himalayas is about 5 seconds of arc, which equals
0.0014 degrees!) However, as the sphere is rolled
around and around outside the closed room, an ob-
server inside the room can measure the gravitational
field g. due to the sphere by measuring with greater
and greater precision the total deflection angle 2¢ =
2 sin e of the plumb line. Derive the equation that he
will need in this calculation of g..

(c) We on earth have a large sphere effectively roll-
ing around us once every day. It is the most massive
sphere in the solar system: it is the sun itself! What is
the value of the gravitational acceleration g, = GM/R?
due to the sun at the position of the earth? (Some
constants useful in this calculation appear inside the
front cover of this book.)

(d) One additional acceleration must be considered
that, however, will not enter our final comparison of
gravitational acceleration g, for different materials.
This additional acceleration is the centrifugal accelera-
tion due to the motion of the earth around the sun.
When you round a corner in a car you are pressed
against the side of the car on the outward side of the
turn. This outward force—called the centrifugal pseudo-
force or the centrifugal inertial force—is due to the
acceleration of your reference frame (the car) toward
the center of the circular turn. This centrifugal inertial
force has the value mv?/r where v is the speed of the car
and r is the radius of the turn. Now the earth moves
around the sun in a path that is nearly circular. The
sun’s gravitational force mg. acts on a plumb bob in a
direction roward the sun; the centrifugal inertial force
mv?/R acts in a direction away from the sun. Compare
the “‘centrifugal acceleration™ »?/R at the position of
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A. Hypothetical effect: morning
Fig. 52. Schematic diagram of the Dicke experiment. Any difference in the gravitational acceleration of the sun for gold
and aluminum should result in opposite sense of net torque on torsion pendulum in the evening compared with the
morning. Large aluminum ball has the same mass as small high-density gold ball.

the earth with the oppositely directed gravitational ac-
celeration g, calculated in part c. What is the net ac-
celeration toward or away from the sun of a particle
riding on the earth as observed in the (accelerated)
frame of the earth?

(e) Of what use is the discussion thus far? A plumb
bob hung near the surface of the earth experiences a
gravitational acceleration g, toward the sun—and an
equal-but-opposite centrifugal acceleration v?/R away
from the sun. Therefore—in the accelerating reference
~ frame of the earth—the bob experiences no net force
at all due to the presence of the sun. Indeed this is the
method by which we constructed an inertial frame in
the first place (Section 2): Let the frame be in free fall
about the center of gravitational attraction. A particle
at rest on the earth’s surface is in free fall about the
sun and therefore experiences no net force due to the
sun. What then does all this have to do with measuring
the equality of gravitational acceleration for particles
made of different substances—the subject of the Dicke
experiment? Answer: Our purpose is to detect the
difference—if any—in the gravitational acceleration
g. toward the sun for different materials. The centri-
fugal acceleration v*/ R away from the sun is presum-
ably the same for all materials and therefore need not
enter any comparison of different materials. Consider

B. Hypothetical effect: evening

a torsion pendulum suspended from its center by a
thin quartz fiber (Fig. 52,A). A light rod of length !
supports at its ends two bobs of equal mass made of
different materials—say aluminum and gold. Suppose
that the gravitational acceleration g, of the gold due to
the sun is slightly greater than the acceleration g. of
the aluminum due to the sun. Then there will be a
slight net torque on the torsion pendulum due to the
sun. For the position of the sun shown in Fig. 52,A,
show that the net torque is counterclockwise when
viewed from above. Show also that the magnitude of
this net torque is given by the expression

/ / !
(55)  torque = mgi 5 — mga 5 = m(g, — g2) 5

Ag) il
Q)2
Suppose that the fraction (Ag/g.) has the maximum
value, 3 X 107, consistent with the results of the final
experiment, that / has the value 0.06 meters, and that
each bob has a mass of 0.03 kilograms. What is the
magnitude of the net torque? Compare this to the
torque provided by the added weight of a bacterium of
mass 1075 kilogram placed on the end of a meter stick
balanced at its center in the gravitational field of the
earth.

= mg’

-
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(f) The sun moves around the heavens as seen from
the earth. Twelve hours later the sun is located as
shown in Fig. 52,B. Show that under these changed
circumstances the net torque will have the same
magnitude as that calculated above but now will be
clockwise as viewed from above—in a sense opposite
to that of part e! This change in the sense of the torque
every twelve hours allows a small difference Ag =
g1 — g in the acceleration of gold and aluminum to be
detected using the torsion pendulum. As the torsion
pendulum jiggles on its fiber because of random mo-
tion, passing trucks, earth tremors and so forth, one
needs to consider only those deflections that keep step
with the changing position of the sun.

(g) A torque on the rod causes an angular rotation
of the quartz fiber of ¢ radians given by the formula

torque = k6

where k is called the torsion constant of the fiber. Show
that the maximum angular rotation of the torsion
pendulum from one side to the other during one rota-
tion of the earth is given by the expression

g mgl < Ag >
tot — k g

(h) In practice Dicke’s torsion balance can be
thought of as consisting of 0.030 kilogram gold and
aluminum bobs mounted on the ends of a beam
6 X 1072 meter in length suspended in a vacuum on a
quartz fiber of torsion constant 2 X 10~% newton
meter per radian. A statistical analysis of the angular
displacements of this torsion pendulum over long
periods of time leads to the conclusion that the frac-
tion Ag/g for gold and aluminum is less than 3 X 107%.
To what mean maximum angle of rotation from side
to side during one rotation of the earth does this cor-
respond? Random motions of the torsion pendulum—
noise!—are of much greater amplitude than this;
hence the need for the statistical analysis of the results
using a programmed computer.

36.* Down with relativity!

Mr. Van Dam is an intelligent and reasonable man
with a knowledge of high school physics. He has the
following objections to the theory of relativity. An-
swer each of Mr. Van Dam’s objections decisively—
without criticizing him ! If you wish, you may present a
single connected account of how and why one is
driven to relativity, in which these objections are all
answered.

(a) “A says B’s clock goes slow, and B says that A’s
clock goes slow. This is a logical contradiction. There-
fore relativity should be abandoned.”

(b) “A says B’s meter sticks are contracted, and B
says A’s meter sticks are contracted. This is a logical
contradiction. Therefore relativity should be aban-
doned.”

(c) ‘‘Relativity does not even have a unique way to
define space and time coordinates. Therefore anything
it says about velocities (and hence about motions) is
without meaning.”

(d) “Relativity postulates that light travels with a
standard speed regardless of the inertial frame from
which its progress is measured. This postulate is cer-
tainly wrong. Anybody with common sense knows
that travel at high speed in the direction of a receding
light pulse will decrease the speed with which the pulse
recedes. Hence light cannot have the same speed for
observers in relative motion. With this disproof of the
basic postulate all of relativity collapses.”

(e) “There isn’t a single experimental test of the
results of special relativity.”

(f) “Relativity offers no way to describe an event
without coordinates—and no way to speak about
coordinates without referring to one or another par-
ticular reference frame. However, physical events have
an existence independent of all choice of coordinates
and all choice of reference frame. Hence relativity—
with its coordinates and reference frames—cannot
provide a valid description of these events.”

(g) “Relativity is concerned only with how we ob-
serve things, not what is really happening. Hence it is
not a scientific theory, since science deals with reality.”

E. APPROXIMATIONS AT LOW VELOCITY

37. Euclidean analogy—a worked example

There is a very small angle, 6,, between the respec-
tive axes of two rotated Euclidean frames. Use the
series expansions of Table 8 to find an approximate set
of transformation equations between the coordinates

of a given point with respect to two reference frames.
Neglect powers of 6, higher than the first.

Solution: From Table 8, for small 6,
sin 0, = 6,
cos f, = 1
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Therefore the Euclidean transformation equa-
tions (inverse of Egs. 29) become

x'=xcosf,—ysinb, =x— 0,y

(0 Y = xsin 6, + y cos 0, = ,x + y

This approximate transformation can be made as
accurate as desired by making 6, sufficiently small.

38. The Galilean transformation

Suppose that 3, is very small. Then B, = tanh 6,
= #,. Use the series expansions of Table 8 to show
that if terms that contain powers of ¢, higher than the
first are neglected, the transformation equations be-
come

(57) X' '=x— Bt

B «1)
(58) = —Bx+1

Now use everyday, nonrelativistic Newtonian argu-
ments to derive the transformation equations between
two reference frames. These are called the Galilean
transformation equations

(59) X' =X — vrlsee
(Galilean transformation)

’,s(‘c = leee

(60)

where v, is the relative speed between the two frames in
meters per second.

Transformation equations 57 and 58 appear to be
completely inconsistent with Egs. 59 and 60. Is this
first impression correct, and if not, why not? (Discus-
sion: Why does », in the Galilean transformation
(Eq. 59) replace g, in Eq. 577 How does Eq. 58 look
when rewritten in terms of v, and f...? How do every-
day velocities compare with the speed of light?)

39.* Limits of accuracy
of a Galilean transformation

Make a more accurate approximation of the trans-
formation equations at low relative velocities by allow-
ing terms in #,® to remain but, again, neglecting terms
with higher powers of 6,. (This is called a second order
approximation in 6,. Notice from the series expansion
of tanh ¢ in Table 8 that even to second order in 4,
B: = 6,.) Show that the coefficients for x and ¢ in Egs.
57 and 58 agree with the improved second-order ap-
proximation to better than 1 percent for velocities 8,
less than 1/7.

If a sports car can accelerate uniformly from rest to
60 miles per hour (about 27 meters per second) in 7
seconds, roughly how many days would it take to
reach 8 = 1/7 at the same constant acceleration? How
many days would be required to reach this speed at
the greatest acceleration that the human body can
stand for reasonable periods (about 7 g, or 7 times the
acceleration of gravity)?

40.* Collisions Newtonian and relativistic
—and the domain within which the
two predictions agree to one percent

Proton A collides elastically with proton B, which is
initially at rest. The outcome of the collision cannot be
predicted. It depends upon the closeness of the en-
counter. In most events proton A will be deviated by
only a slight angle a4 from its original direction of
motion. Then proton B will be given only a slight kick
off to the side, at an angle ap (relative to the forward
direction) that is close to 90 degrees. Occasionally
there is a very close encounter in which B acquires
nearly all the energy and goes off at a very small angle
ap to the forward direction. Between these two ex-

77
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Fig. 53. Laboratory frame record
of a symmetric elastic collision.
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Fig. 54, A. Photograph of a nonrelativistic symmetric elastic collision

between a moving proton and a second proton initially at rest. Initial

-~
speed of the incident proton is about8 = 0.1. The angle between out- 3 't./
going protons is 90 degrees, as predicted by Newtonian mechanics. ‘ j ,,/'
From C. F. Powell and G. P. S. Occhialini, Nuclear Physics in Photo- et RIS T 2
graphs (Oxford University Press, Oxford, 1947). . / )
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tremes there occurs from time to time a ‘‘symmetric
collision” in which the two identical particles come off
with identical speeds along paths that make identical
angles aa = an = @/2 with the forward direction
(Fig. 53). Question: How great is the angle of deflection
in a symmetric collision? Discussion: According to
Newtonian mechanics the total angle of separation, is
90 degrees in every elastic collision (symmetric or not!).
That this angle will be less than 90 degrees for a fast im-
pact is one of the most interesting and decisive predic-
tions of relativity. Figure 54,A, shows a low-velocity
collision whose 90 degree angle of separation satisfies
the Newtonian prediction. In contrast, Fig. 54,B,
shows a high-velocity collision whose angle of separa-
tion is decisively less than 90 degrees. This circum-

Fig. 54, B. Expansion chamber photo-
graph of a relativistic and approximately
symmetric elastic collision between a
moving electron and a second electron
initially at rest. Initial speed of the inci-
dent electron is about g = 0.97. The
angle between outgoing electrons is much
less than the 90 degree angle predicted
by Newtonian mechanics. The curved
path of the charged electrons is due to
the presence of a magnetic field used to
determine the momentum of each elec-
tron. Document Hermann Publishers,
Paris.

stance means that the difference between the separation
angle from 90 degrees provides a useful measure of the
departure from Newtonian mechanics. For example,
ask this question: How high must the velocity in such
collision experiments be before the separation angle
deviates from 90 degrees by as much as 1/100 of a
radian? It greatly simplifies the analysis of this ques-
tion to look at the symmetric collision pictured above
from a frame of reference so chosen that one can
capitalize on symmetry arguments. For this purpose
climb onto a rocket and travel to the right with a
velocity just great enough to keep up with the forward
velocities of A and B after the collision. Viewed from
this rocket, particles A and B therefore have no for-
ward velocity component :
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BEFORE

Fig. 55. Rocket frame records of
the symmetric elastic collision of
Fig. 53. Rocket frame is so chosen

that particles A and B have no for-
ward velocity component after the

As to the lateral (up-down) velocity components of A
and B, note that these were equal in magnitude and
opposite in direction in the laboratory frame. More-
over, this symmetry feature of the velocity diagram
cannot be altered by viewing the collision from a
rocket frame moving to the right. Therefore the veloci-
ties of A and B after the collision, as viewed in the
rocket frame, are equal and opposite. This conclusion
is payoff No. 1 from arguments based on symmerry.
Now for payoff No. 2—again achieved by viewing
the collision in the rocket frame of reference: In this
frame, and before the collision, A and B have veloci-
ties that are equal in magnitude and opposite in direc-
tion. Why? What inconsistency would result if these
speeds were not equal? Symmetry would be violated,
as one can see in the following way.

The diagram of the velocity in the rocket frame
after the collision has left-right symmetry. In other
words, by looking at the particles separating after the
collision it is impossible to tell from what directions
the particles arrived at the point of collision.

BEFORE

Fig. 56. Rocket record as it would be if, before the col-
lision, particles A and B have different speeds: an incorrect
assumption.

collision.

Instead of A coming from the left and B coming from
the right, A could as well be coming from the right
and B from the left (for example, if the viewer went
around in back and looked at the collision from the
other side).

Fig. 57. Rocket record of Fig. 56 looked at from the other
side.

But the colliding particles are identical—what is
called B in the diagram above could as well have been
called A, and conversely :

Fig. 58. Rocket record of Fig. 57 with labels A and B for
identical balls interchanged.
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Fig. 59. Conclusion of symmetry
arguments: In the rocket frame
in which balls A and B have no
forward velocity component after
the collision, all speeds before the
collision and all speeds after the
collision have the same value.

Now note that we have in Figs. 56 and 58 two dif-
ferent initial conditions that result in one and the same
outcome (Fig. 53). Moreover, these initial conditions
differ only in that a suitable increase in the speed of
the observing rocket transforms Fig. 56 into the ap-
pearance of Fig. 58. But the ourcome of Fig. 56 cannot
continue to look the same as the outcome of Fig. 58
after this increase in the speed of the observer. There
is therefore an inconsistency in assuming that Fig. 56
and Fig. 58 were different in the first place. To avoid
this inconsistency one must conclude that in the rocket
frame A and B have the same speed before the collision,
as drawn in Fig. 55.

Not only do A and B have equal speeds in the rocket
frame before the collision—and equal speeds after the
collision—but also these speeds before and after the
collision are the same. If they were not, the following
difficulty would arise. (Third use of a symmetry argu-
ment—here not symmetry in space but symmetry in
time!) Make a moving picture of the collision, develop
and print it, and run it backwards through the pro-
jector. If originally the particles /ost speed in the colli-
sion, they will now be seen to gain speed. Such a dif-
ference between the two directions of time is a
characteristic feature of so-called irreversible processes,
such as (1) the flow of heat from a hotter object to a
cooler one, (2) the aging of an animal, (3) the breaking
of an egg, and (4) an inelastic encounter. However, we
have limited attention here to elastic collisions. There-
fore we now accept for study only those events that
are reversible according to the following definition:

A reversible process is one in which it is impossible

to distinguish one direction of time from the other

by a difference between a film of the process run
through the projector in one direction and the same
film run through the projector in the other direction.
Because the collision of the two protons is elastic, all
four speeds in Fig. 59 are identical.
This result is very compact and simple. The reasoning

leading up to this result can be summarized in a form
equally compact and simple. Merely cite these two
words: “By symmetry!” Symmetry reasoning of this
kind simplifies the analysis of a great variety of phys-
ical problems.

The reasoning so far, being based as it is on sym-
metry considerations, is the same in Newtonian and
in relativistic mechanics. The difference between the
accounts appears when the now completed rocket-
velocity diagram is transformed back to the labora-
tory frame. In Newtonian mechanics velocities add as
vectors. Therefore we have only to add the horizontal
velocity B, of the rocket frame after the collision to
find the velocities of A and B in the laboratory frame
after the collision:

Fig. 60. Newtonian (nonrela-
tivistic) analysis of resultant
velocities in the laboratory
frame after the collision.

Evidently the angle of separation « is indeed always
90 degrees in Newtonian mechanics, independent of
the velocity of the original impact. Not so in relativity!

Show that the incident proton can have a velocity as
great as 8 = 2/7 without making the angle between v
and vp in a symmetric collision depart from the New-
tonian value of 90 degrees by as much as 0.01 radian—
that is, show that Newtonian mechanics gives good
accuracy for a particle with (2/7)c colliding with a
particle at rest (or particles with velocity (1/7)c collid-
ing with each other). The results of Ex. 20 may be
useful.
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41.* Examples of the limits of Newtonian
mechanics

Use the particle speed 8 = 1/7 (Ex. 39) as an ap- tonian mechanics. Fill in the table below, following the
proximate maximum limit for the validity of New- example of the completed first entry.

Example of motion B Is Newtonian analysis of this
motion adequate?

Satellite circling the earth at a speed of 18,000 miles per hour. 1/37,200 Yes, because g < 1/7

Earth circling the sun at an orbital speed of 30 kilometers per second.

Electron circling a proton in the orbit of smallest radius in a hydrogen
atom. (Hint: The speed of the electron in the inner orbit of an atom of
atomic number Z, where Z is the number of protons in the nucleus, is
derived in Ex. 101 in Chap. 2 (accurate for low velocities)

v =(Z/137)c
which is accurate for low velocities; for hydrogen Z = 1.)

Electron in the inner orbit of the gold atom, for which Z = 79.

Electron moving with kinetic energy of 5000 electron-volts. (Hint: One
electron-volt is equal to 1.6 X 107 joules. Try using the Newtonian
expression for kinetic energy.)

A proton or neutron moving with kinetic energy of 10 MeV (million
electron-volts) in a nucleus. i
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F. SPACETIME PHYSICS: MORE OBSERVATIONS

42. Time dilation with p-mesons—
a worked example

In a given sample of y-mesons (mu-mesons: ele-
mentary particles produced in some nuclear reactions),
half will decay to other elementary particles in 1.5
microseconds (measured with respect to a reference
frame in which the u-mesons are at rest). Half of the
remainder will decay in the next 1.5 microseconds,
and so on.

(a) Consider u-mesons produced by the collision of
cosmic rays with gas nuclei in the atmosphere at a
height 60 kilometers above the surface of the earth.
The u-mesons move vertically downward with a speed
approaching that of light. Approximately how long
will it take them to reach the earth as measured by an
observer at rest on the surface of the earth? If there
were no time dilation, approximately what fraction of
the mesons produced at a height of 60 kilometers
would remain undecayed by the time they reached
the earth?

(b) Idealize the rather complicated actual experi-
mental situation to following roughly equivalent situa-
tion: All the mesons are produced at the same height
(60 kilometers); all have the same speed; all travel
straight down; of these 1/8 reach sea level without
undergoing decay. Question: How can there possibly
be so great a discrepancy between the prediction of
part a and this observation? And how great is the
difference between the velocity of these u-mesons and
the velocity of light?f

Solution: The p-mesons travel with nearly the
speed of light. They therefore travel 60 kilometers
in approximately

60 X 10% meters
3 X 10® meters/second

The “half-life”” of u-mesons is 1.5 X 10~% seconds
as observed in a reference frame in which they
are at rest. If there were no time dilation the
travel time to earth would be 2 X 1074/1.5 X 10~¢
= 133 half-lives. The passage of each half-life
reduces the number of remaining p-mesons by
one-half. Therefore after 133 half-lives there

= 2 X 10~* seconds

A film about this experiment is available. See David H.
Frisch and James H. Smith, “Measurement of the Rela-
tivistic Time Dilation Using u-Mesons,” American Journal
of Physics, 31, 342 (May 1963). The original experiment is
reported by B. Rossi and D. B. Hall, in Physical Review,
59, 223 (1941).

43.

should be only the fraction
1/2X12X12X1/2--- =1/28 =104

remaining. In fact, there are 1/8 = 1/2° remaining,
as determined by experiment (part b). Therefore
in the rocket frame in which the p-mesons are at
rest, only 3 half-lives have passed

At = 3 X (1.5 X 10-¢ seconds)
X (3 X 10® meters/second)
= 1.35 X 10°* meters

The motion of the meson, seen in the frame of
reference attached to it, is naturally zero

Ax' =0

Therefore the interval of proper time from forma-
tion to arrival at the ground is

Ar = [(AF)? — (Ax)YV2 = 1.35 X 10° meters

But this interval has the same numerical value in
the laboratory frame as in the meson frame; thus,

Ar = [(A1)? — (Ax)Y2 = 1.35 X 10° meters
or

(61)  [(Ax/B)? — (Ax)Y'2 = 1.35 X 10° meters

* We know the distance of travel in the laboratory

frame, Ax = 6 X 10* meters. Consequently we
can find the velocity g from Eq. 61. Square both
sides of the equation and divide by (Ax)? finding

1/8» — 1 =[1.35 X 103/(6 X 10%)]?
or

1—p
62
Clearly B is nearly equal to one. Therefore set
1-=0+81—-p)=21—-7)

from which

1-p=25Xx10"

= 35.06 X 10~*

or

The difference in speed between the mesons and
light is given by this small fraction.

Time dilation with 7F-mesons

Laboratory experiments on particle decay are
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much more conveniently done with #-mesons than
with u-mesons, as is seen from the following table.

“Characteristic dis-

Time for half to tance” (speed of

Particle decay (measured  light multiplied by
in rest frame) foregoing time)
p-meson
(207 times 1.5 X 10~%second 450 meters

electron mass)

w-meson
(273 times
electron mass)

18 X 1079 second 5.4 meters

In a given sample of =*-mesons half will decay to other
elementary particles in 18 nanoseconds (measured in
a reference frame in which the =*-mesons are at rest).
Half of the remainder will decay in the next 18 nano-
seconds, and so on. In the Penn—Princeton proton
synchrotron =*-mesons are produced when a proton
beam strikes an aluminum target inside the accelera-
tor. Mesons leave this target with nearly the speed of
light. If there were no time dilation and if no mesons
were removed from the resulting beam by collisions,
what would be the greatest distance from the target at
which half of the mesons would remain undecayed?
The w-mesons of interest in a particular experiment
have cosh # = 1/(1 — g%)Y2 = 15 where 6 is the velocity
parameter. By what factor is the predicted distance
from the target for half decay increased by time dila-
tion over the previous prediction—that is, by what
factor does this dilation effect allow one to increase
the separation between his detecting equipment and
the target?

44.* Aberration of starlight

The angle between one remote star (B) and other
remote stars (A, C) appears to change from one time
of year to another because the earth changes its veloc-
ity over a six-month period by 2 X 30 kilometers per
second = 60 kilometers per second. Show that the
angle of aberration, y (relative to angles as measured
by an observer on the sun), is given by the equation
sin ¢ = . Here g is the speed of the earth in its orbit
about the sun. Although the aberration of starlight can
be observed experimentally, the aberration angle ¢ is
so small that it is not at present possible to confirm by
experiment that the relativistic prediction above is the
correct one—or that the almost equal Newtonian
prediction tan ¢ = g is not the correct one.

45. Fizeau experiment

Light moves more slowly through a transparent
material medium than through a vacuum. Let g’
represent this reduced speed of light in the medium.
Idealize to a case in which this reduced velocity is
independent of the wavelength of the light. Place the
medium in a rocket moving at velocity §, to the right
relative to the laboratory frame, and let light travel
through the medium, also to the right. Use the law of
addition of velocities to find an expression for the
velocity g of the light in the laboratory frame. Show
that for small relative velocity 8, between the rocket
and laboratory frames, the velocity of the light with
respect to the laboratory frame is given approximately
by the expression

(62) B=p+8{1—(B)

Fig, 61, Aberration of starlight.
Both diagrams show positions as
observed in a reference frame in
which the sun is at rest.

Observer traveling rapidly in a given direc
tion at one time of year has to point tele-
scopes as indicated to see the four distant
stars

Observer traveling rapidly in the other direc-
- tion six months later
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This expression has been tested by Fizeau using water
flowing in opposite directions in the two arms of an
interferometer similar (but not identical) to the inter-
ferometer used by Michelson and Morley (Ex. 33).1

46. Cerenkov radiation

No particle has been observed to travel faster than
the speed of light in a vacuum. However particles have
been observed that travel in a material medium faster
than the speed of light in that medium. When a
charged particle moves through a medium faster than
light moves in that medium it radiates coherent light in
a cone whose axis lies along the path of the particle.
(Note the similarity to waves created by a motorboat
speeding across calm water!) This is called Cerenkov
radiation (C—Russian—is pronounced as “ch”). Let
8 be the speed of the particle in the medium and 8’ be
the speed of light in the medium. From this informa-
tion use Fig. 62 to show that the half-angle ¢ of the
light cone is given by the expression

(63) cos ¢ = B'/B

tH. Fizeau, Comptes Rendus, 33, 349 (1851). A fasci-
nating discussion (in French) of some central themes in
relativity theory—delivered more than fifty years before
Einstein’s first paper.

Fig. 62. Calculation of Cerenkov angle ¢.

Consider the plastic Lucite for which g’ = 2/3. What
is the minimum velocity that a charged particle can
have if it is to produce Cerenkov radiation in Lucite?
What is the maximum angle ¢ at which Cerenkov
radiation can be produced in Lucite? Measurement of
the angle provides a good way to measure the velocity
of the particle.

{For details on the experimental uses of Cerenkoy radia-
tion see Chapter VII of Techniques of High Energy Physics,
edited by David M. Ritson, (Interscience Publishers, New
York, 1961).

Fig. 63. Cerenkov radiation from a beam of 700-MeV
electrons traveling through air. The beam is very much
narrower than the circle of Cerenkov light seen on the
screen. The beam emerges at the lower left—through a thin
aluminum foil—from the vacuum inside the Stanford Uni-
versity linear electron accelerator. The beam itself is visible
in the picture through the excitation and ionization it causes
as it passes through the air. In addition to this excitation of
air molecules the electrons emit Cerenkov radiation in a
narrow forward cone. The cone of light from the left hand
portion of the beam intercepts the screen in a circular ring
which constitutes the outer portion of the disk of light on
the screen. Electrons nearer the screen emit radiation at the
same angle, which strikes the screen in smaller concentric
rings because the emitting electrons are nearer to the screen.
The result of radiation from electrons near and far is a
solid disk of light. The Cerenkov angle ¢ for the most
distant electrons should correspond to the half-angle sub-
tended by the circle at the exit window from the vacuum
system. The speed g of the 700-MeV electrons differs
from 1—the speed of light—by less than one part in a mil-
lion (determined using expressions from Chapter 2). There-
fore there is little error in giving 8 the value 1. The speed g’
of light in air can be calculated from the observed index of
refraction of light in air: n = 1/8’ = 1.00029. The Cerenkov
formula becomes
cos ¢ = B'/B =B = 1/n = 1/1.00029

For small ¢ we can replace these expressions by approximate

ones
cosp=1—0¢42=00+29X1091t=1-29 X 10~

from which the calculated value of the angle is ¢, =
2.4 %X 102 radian. The distance from exit window to screen
is approximately 40 feet and the radius of the spot is about
10.5 inches, or 0.88 foot. The observed angle is thus

dobs = 0.88/40 = 2.2 X 10~2radian

which compares well with the calculated value. (The time
exposure photograph was taken by A. M. Hudson of
Occidental College and is reproduced here with his per-
mission.)
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47." Deflection of starlight by the sun

Estimate the deflection of starlight by the sun using
an elementary analysis. Discussion: Consider first a
simpler example of a similar phenomenon. An eleva-
tor car of width L is released from rest near the surface
of the earth. At the instant of release a narrow beam
of light is fired horizontally from one wall of the car
toward the other wall. After release the elevator car is
an inertial frame. Therefore the light beam will cross
the car in what is a straight line wirh respect to the car.
With respect to the earth, however, the beam of light
is falling—because the elevator is falling. Therefore, in
a gravitational field, a beam of light must fall. As
another example a ray of starlight in its passage
tangentially across the earth’s surface will receive a
gravitational deflection (over and above any refraction
by the earth’s atmosphere). However, the time to
cross the earth is so short, and in consequence the
deflection so slight, that this effect has not yet been
detected on the earth. At the surface of the sun, how-
ever, the acceleration of gravity has the much greater
value of 275 meters per second per second. More-

G. GEOMETRIC INTERPRETATION

48. Geometric interpretation

Develop a geometric interpretation of the Lorentz
transformation using the following outline.

(@) Show that in the laboratory spacetime diagram
the world line of the origin of the rocket frame will be
the line marked ¢ in Fig. 64. This is the locus of all
events that occur at the origin of the rocket frame,
that is, it is the rocket t' axis. Show that the locus of
events that occur at x’ = 1 meter in the rocket frame
is a line that parallels the ¢ axis in Fig. 64, and
similarly for x' = 2, 3, 4 meters.

(b) Show that the slope of the ’ axis relative to the
7 axis in Fig. 64 is given by the expression (meters of
distance traveled for each)/(meter of light-travel time)
= fB- = tanh 6,. What happens to the slope 8, in the
two cases: (1) the rocket travels very slowly and (2) the
rocket travels at a speed very close to the speed
of light.

(c) Now for the crucial step! Where shall we locate
the rocket x’ axis in the laboratory spacetime diagram?
The principle of relativity says that the measured
speed of light must be the same in the two frames. The
dotted line in Fig. 65 is the world line of a flash of
light. Show that the principle of relativity requires that
the rocket x’ axis be tilted upward at the same slope as

over, the time of passage across the surface is much
increased because the sun has a greater diameter,
1.4 X 10° meters. Determine an “effective time of fall”’
from this diameter and the speed of light. From this
time of fall deduce the net velocity of fall toward the
sun produced by the end of the whole period of gravi-
tational interaction. (The maximum acceleration act-
ing for this “effective time” produces the same net
effect [calculus proof!] produced by the actual ac-
celeration—changing in magnitude and direction along
the path—in the entire passage of the ray through the
sun’s field of force.) Comparing this lateral velocity
with the forward velocity of the light deduce the angle
of deflection. The accurate analysis of special relativity
gives the same result. However, Einstein’s 1915 general
relativity predicted a previously neglected effect, as-
sociated with the change of lengths in a gravitational
field that produces something like a supplementary
refraction of the ray of light and doubles the predicted
deflection. (Deflection observed in 1947 eclipse of the
sun: (9.8 + 1.3) X 10~° radian; in the 1952 eclipse:
(8.2 + 0.5) X 10~ radian.)

Fig. 64. Location of the rocket time axis in the laboratory
spacetime diagram.

Fig. 65. Location of the rocket space axis in the laboratory
spacetime diagram.
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Fig. 66. Calibration of rocket space and time axes.

the rocket ¢ axis is tilted to the right. Show that the
loci of events that occur at rocket times ¢/ =1, 2, 3
meters respectively lie parallel to the rocket x’ axis
as shown.

(d) Calibrate the rocket axes! Draw the hyperbola
2 — x* = 1 (Fig. 66). At the place where the hyperbola
crosses the laboratory 7 axis (where x = 0), we have
t = 1 meter of time. But the interval 72 — x? is an in-
variant so that ()2 — (x’)* = 1 also. Therefore at the
place where the hyperbola crosses the rocket ¢ axis
(where x” = 0), we have ¢’ = 1 meter of time. Because
of the symmetry and the linearity of the transforma-
tion equations, we can use the distance along the
rocket ¢/ axis from the origin to # =1 as a unit
distance to lay off along both the ' and the x’ axes.
This completes the derivation of the construction.
Next: apply it!

(e) Show that if two events are simultaneous in the
laboratory frame they will lie on a line parallel to the
laboratory x axis of the spacetime diagram (Fig. 67).
Show that if two events are simultaneous in the rocket
frame they will lie on a line parallel to the rocket x’
axis of the spacetime diagram. Hence the two observ-

Fig. 68. A meter stick at rest in laboratory frame appears
Lorentz-contracted when observed in rocket frame.

ers will not necessarily agree on which events are

simultanedus. This is the relative synchronization of
clocks.

(f) Using lines of simultaneity in Fig. 67, show that
at rocket time # = 1 meter, the observer in the rocket
frame determines that the clock at the laboratory
origin has not yet reached one meter of time (i.e., the
laboratory clock runs slow), whereas the observer in
the laboratory frame observes that the clock at the
laboratory origin already reads more than one meter
of time (i.e., the rocket clock runs slow). This is zime
dilation.

Fig. 67. Illustration of time dilation.

(2) A meter stick lies at rest in the laboratory frame
with one end at the origin of that frame (Fig. 68).
Measurement of its length in the laboratory frame will
give a result like @b in Fig. 68. Measurement of its
length in the rocket frame (i.e., determining the posi-
tion of the endpoints at the “same time™) will give a
result like de in the figure. Show that this measure-
ment results in an observed Lorentz contraction in the
rocket frame. Using Fig. 69 show that a meter stick at
rest in the rocket frame with one end at the origin of
that frame will be Lorentz contracted when observed
in the laboratory frame.

Fig. 69. A meter stick at rest in rocket frame appears
Lorentz-contracted when observed in laboratory frame.
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(h) Sketch spacetime diagrams for the relativity of
simultaneity, time dilation, and Lorentz contraction
in the limiting cases that the relative velocity between
laboratory and rocket frames is very small and very
large.

(i) Return to the spacetime diagram of Fig. 22 in
the chapter, which describes the motion of particles
and light flashes in two dimensions. Show that the
rocket “plane of simultaneity” is tilted relative to the
laboratory plane of simultaneity. Explain the implica-
tions of this tilt for the relative simultaneity of events
that occur at different positions on the x axis of the
laboratory spacetime diagram, and for the relative
simultaneity of events that occur at different positions
on the y axis of the laboratory spacetime diagram.

Fig. 70. Location of space and time axes for rocket frame
moving in negative laboratory x direction.

(J) Consider a rocket frame moving in the negative
x direction in the laboratory frame. Verify the features
of Fig. 70, in particular the opposite sense of the rela-
tive synchronization of clocks and the same sense of
time dilation when compared with the rocket moving
in the positive x direction.

49. The clock paradox I1—
a worked example

When Peter returned from his fourteen years of
traveling (EX. 27) he was still young enough to learn
some relativity. But the more he studied the more
puzzled he became. He and his brother Paul, being in
relative motion, “each should see the other’s clocks
running slow.” This simple slogan, put in Paul’s
mouth, made it easy enough to understand why
“Peter’s clocks—and Peter’s aging processes—ran

slow,” so that Peter was the younger of the two on his
1

fSee E. Lowry, American Journal of Physics, 31, 59
(1963).

return. “But if the slogan is valid,” Peter asked, “then
would not 7/—if I had investigated—have found
Paul’s clocks running slow? So how did he age more
than I?” Question: What is the way out of Peter’s
difficulties?

Solution: As Peter studied more, with this para-
dox worrying him, he learned that words like
“observer” and “observed time” do not have the
simple meaning he had at first attributed to them,
He should not think of how he might directly
have kept day-to-day track of Paul’s aging back
on earth, either by radio messages or by other
methods. That procedure, while conceivable,
does not lend itself to the simplest analysis, Peter
discovered. The observer in relativity theory, he |
found, is to be understood as a whole framework
of rods and recording clocks moving along with
uniform velocity—with the same velocity as
Peter himself as he recedes from the earth, 8, =
24/25 = 0.96. That parade of clocks (“Peter’s
clocks and Peter’s reference frame) zooms by
the earth. As each clock passes Paul it punches
out (1) the reading of Paul’s clock and (2) its own
reading and location. The shorthand phrase
“Peter observes Paul” means that Peter collects
these cards—or the information on them—at
some later time.

“So what?” Peter asked himself at this point.
“In any case I know that the reading of Paul’s
clock increases from one punchout to the next
only (1 — B2"2 = 7/25 as much as the increase
in readings of my own clock. So Paul is the man
who should have been younger at the end of my
Journey, not me. But look at his gray hair!
Where am I going wrong?”

Running over in his mind once again the events
of his journey, Peter could not help but remember
the moment when he had stopped his outward
trip and started his return to the earth. ““/ stopped
and / turned back; but,” he suddenly asked him-
self, “what about my inertial reference frame?
How can an inertial frame turn back? He looked
into this issue more and more carefully. He
found himself forced to conclude that the refer-
ence frame employed for the first part of his
flight—and especially the lattice clock alongside
him that had recorded information for the seven
outbound years—must have kept on their swift
way like a stream of superhighway traffic as one
car makes a U-turn into the returning lanes.
Another stream of clocks accompanied him home
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—a second inertial reference frame. For all the
seven years of return one of these clocks re-
mained faithfully alongside. When it took over
escort duty, it adopted the seven-year reading of
the outbound clock. It read fourteen years at the
time when Peter rejoined Paul.

The inbound parade of clocks was passing the
earth all these seven years. One by one as they
went by they punched out their readings and the
readings of Paul’s clock. The punch cards made a
growing pile on the ground at Paul’s feet. As
those seven years went by for Peter’s inbound
escort, the cards showed that Paul’s clocks ran
off only 7/25 of this time; that is (7/25) of 7 years
or 1.96 years.

“What on earth is the matter with my reason-
ing?” Peter asked aloud at this point. “Now I find
myself concluding that Paul should have aged 1.96
years on my outbound trip, and 1.96 years on my
inbound trip, or altogether 3.92 years. Yet I
know 1 aged fourteen years, and I know he aged
more than I did. What have I overlooked?” So
saying, he drew a spacetime diagram (Fig. 71),
and at least had the answer to his difficulty—the
time AB that he had so far left out of account.
This time, Peter saw, corrects for the difference
between the standards of simultaneity of his out-
going and returning reference frames. A separate
calculation, using the results of Ex. 11, gives for
this time the value 46.08 years. This supplement
has to be added to Paul’s aging as measured by
Peter’s two sets of recording clocks. Peter’s final
calculation for Paul’s age (including his age of 21
years when the trip began) gave

21 + 1.96 4 46.08 + 1.96 = 71 years

He could thankfully rejoice in his own compara-
tive youth of 21 + 14 = 35 years (uncorrected
for the time required to learn spacetime physics!).
The present analysis does not purport to be the
simplest way to calculate the aging of the twins.
For that one goes back to Paul’s analysis, out-
lined in Ex. 27. There one has to consider only a
single inertial reference frame, the frame with its
origin at Paul. The present analysis illustrates
how any correct method of analysis leads to the
same result as any other correct method of
analysis.

Fig. 71. Peter’s bookkeeping on Paul’s aging process. Dur-
ing Peter’s outbound journey (OT in diagram) his clock
flashes a new year seven times. An array of synchronized
clocks escort him. Each makes its own seventh year flash
somewhere along the “line of simultaneity” AT and punches
out a record. The Peter clock which punches out a record
at A sees Paul’s clock reading only 1.96 years (“slowing of
a clock as viewed from a moving reference frame”). On the
return journey a different array of synchronized clocks
escorts Peter (“second inertial reference frame”). Each of
them flashes a seven year sign as it crosses the line of simul-
taneity BT. The one which travels alongside Peter makes
seven more flashes along the world line TC, the last of them
signaling fourteen years of travel just as Peter rejoins Paul
at C. During the period BC, while the clocks of Peter’s
inbound reference frame indicate the passage of seven
years, Paul has aged only another 1.96 years (again the
“slowing of a clock as viewed from a moving reference
frame”). But the bookkeeping done so far by Peter’s two
inertial reference frames is incomplete. Neither one of them
does the job of counting the time lapse AB. It is 46.08 years
(“correction for change in standard of simultaneity” be-
tween Peter’s outgoing and incoming inertial reference
frames). Thus the slowing of Paul’s clocks as observed by
Peter’s two sets of recording clocks in no way keeps Peter
from ending up younger than Paul.
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H. FREE-FOR-ALL!

50. Contraction or rotation?{

Consider a cube, at rest in the rocket frame,
whose edge measures 1 meter in that frame. In the
laboratory frame the cube is Lorentz contracted in the
direction of motion, as shown in Fig. 72. This Lorentz
contraction can be determined, for example, from the
locations of four clocks at rest and synchronized in the
laboratory frame with which the four corners of the
cube, E, F, G, H, coincide when all four clocks read
the same time. In this way time lags in the travel of
light from different corners of the cube are eliminated
from the observation procedure. Now for a different
observing procedure! ¥

Stand in the laboratory frame and /look at the cube
with one eye as the cube passes overhead (Fig. 72).
What one sees at any time is light that enters his eye at
that time, even if it left the different corners of the cube
at different times. Hence, what one sees visually may
not be the same as what he observes using a lattice-

tFor a more complete treatment of this topic, and refer-
ences, see Edwin F. Taylor, Introductory Mechanics, (John
Wiley and Sons, New York, 1963), p. 346.

Fig. 72. Position of eye of visual observer watching “cube”
pass overhead.

work of clocks. If the cube is viewed from the bottom
then the distance GO is equal to the distance HO, so
light that leaves G and H simultaneously will arrive at
O simultaneously. Hence, when one sees the cube to
be overhead he will see the Lorentz contraction of the
bottom edge.

(a) Light from E that arrives at O simultaneously
with light from G will have to leave E earlier than
light from G left G. How much earlier? How far has
the cube moved in this time? What is the value of the
distance x in Fig. 73?

(b) Suppose that one chooses to interpret the pro-
jection in Fig. 73 as a rotation of a cube that is not
Lorentz contracted. Find an expression for the angle
of apparent rotation ¢ of this uncontracted cube in
Fig. 74. Interpret this expression for the two limiting
cases —- 0 and g—-1.

(c) Is the word “‘really’ an appropriate word in the
following quotations?

(1) An observer in the rocket frame says, ““The cube

is really neither rotated nor contracted.”

(2) An observer using the laboratory latticework of

clocks says, “The cube is really Lorentz con-

Fig. 73. What visual observer sees as he
looks up from below.

Fig. 74. How visual observer can interpret
the projection of Fig. 73.
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Fig. 75. Round-trip world line of
rocket which experiences constant
acceleration or deceleration.

tracted but not rotated.”

(3) The visual observer in the laboratory frame says,
“The cube is really rotated but not Lorentz
contracted.”

What can one rightfully say—in a sentence or two—
to make each observer think it reasonable that the
other observers should come to conclusions different
from his own?

51.** Clock paradox Il

Can one go to a point 7000 light years away—and
return—without aging more than 40 years? “Yes” is
the conclusion reached by an engineer on the staff of a
large aviation firm in a recent report. In his analysis
the traveler experiences a constant “1-g” acceleration
(or deceleration, depending upon the stage reached in
his journey—see spacetime diagram of Fig. 75). As-
suming this limitation, is he right in his conclusion?
(For simplicity, limit attention to the first or “A”-jet
phase of the motion—the first 10 years of astronaut
time—and double the distance covered in that time to
find how far it is to the most remote point reached in
the course of the journey.)

(a) The acceleration is not g = 9.8 meters per second
per second relative to the laboratory frame. If it were,
how many times faster than light would the spaceship
be moving at the end of ten years (1 year = 31.6 X 10°
seconds)? If the acceleration is not specified with re-
spect to the laboratory, then with respect to what is it

specified? Discussion: Look at the bathroom scales on
which one is standing! The rocket jet is always turned
up to the point where these scales read one’s correct
weight. Under these conditions one is being acceler-
ated at g = 9.8 meters per second per second with
respect to a spaceship that (1) instantaneously hap-
pens to be riding alongside with identical velocity, but
(2) is not being accelerated, and, therefore (3) provides
the (momentary) inertial frame of reference relative to
which the acceleration is g. (Hereafter this acceleration
is translated from g—expressed in meters per second
per second—to g* = g/c’—measured in meters of
distance per meter of time per meter of time.)

(b) How much velocity does the spaceship have after
a given time? This is the moment to object to the ques-
tion and to rephrase it. Velocity B is not the simple
quantity to analyze. The simple quantity is the
velocity parameter 6. It is simple because it is additive
in this sense: Let the velocity parameter of the space-
ship in Figure 76 with respect to the imaginary in-
stantaneously comoving inertial frame change from
0 to df in an astronaut time dr. Then the velocity
parameter of the spaceship with respect to the labora-
tory frame changes in the same astronaut time from
the initial value 6 to the subsequent value 6 + df. Now
relate df to the acceleration g* in the instantaneously
comoving inertial frame. In this frame g*dr = df =
tanh (df) = db so that

(64) do = g* dr
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Velocity parameter 6

—> Velocity parameter 8
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Fig. 76. Laboratory record of ac-
celerating rocket.

Each lapse of time dr on the astronaut’s watch is ac-
companied by an additional increase df = g* dr in the
velocity parameter of the spaceship. In the laboratory
frame the total velocity parameter of the spaceship is
simply the sum of these additional increases in the
velocity parameter. Assume that the spaceship starts
from rest. Then its velocity parameter will increase
linearly with astronaut time according to the equation

(65)

This expression gives the velocity parameter 6 of the
spaceship in the laboratory frame at any time 7 in the
astronaut’s frame.

(c) What laboratory distance x does the spaceship
cover in a given astronaut time 7?7 At any instant the
velocity of the spaceship in the laboratory frame is
related to its velocity parameter by the equation
dx/dt = tanh 6 so that the distance dx covered in
laboratory time dt is

dx = tanh 0 dr

0=g*7r

Remember that the time between ticks of the astro-
naut’s watch dr appear to have the larger value df in
the laboratory frame (time dilation) given by the
expression

dt = cosh 6 dr

Hence the laboratory distance dx covered in astronaut
time dr is

dx = tanh 6 cosh 0 dr = sinh 0 dr
Use the expression § = g*r from part b
dx = sinh (g*7) dr

Sum (integrate) all these small displacements dx from
zero astronaut time to a final astronaut fime to find

(66) e &% [cosh (g*r) — 1]

This expression gives the laboratory distance x covered
by the spaceship at any time 7 in the astronaut’s
frame.

(d) Convert g* (in meters per meter per meter) to
g = g*c* (meters per second per second) and r
(meters) to 7. = 7/c (seconds) in the expression of
part c. Determine whether the engineer is correct in
his conclusion reported at the beginning of this exer-
cise. (One year is 31.6 X 10° seconds).

52.* The tilted meter stick

A meter stick that lies parallel to the x axis moves in
the y direction of the laboratory frame with speed gv.
In the rocket frame the stick is tilted upward in the
positive x’ direction. Explain why this is, first without
using any equations. Let the center of the meter stick
pass the point x =y =x"=)»" =0 at a time 7 = ¢/

= 0, as shown in the figures. Next calculate the angle

6’ at which the meter stick is inclined to the x’ axis in
the rocket frame. Discussion: Where and when does
the right end of the meter stick cross the x axis as ob-
served in the laboratory frame? Where and when does
the right end of the meter stick make this crossing as
observed in the rocket frame? The experimentally ob-
served Thomas precession of the electron in an atom—
described in Ex. 103—can be explained in the same way
as the phenomenon of the tilted meter stick.

53." The meter-stick paradoxf
Note: Ex. 52 should be completed before Ex. 53.

A meter stick lies along the x axis of the laboratory
frame and approaches the origin with velocity §,. A
very thin plate parallel to the xz laboratory plane
moves upward in the y direction with speed 8. The

TSee R, Shaw, American Journal of Physics, 30, 72 (1962).
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SIS SIS SIS,

Fig. 77, A. Meter stick moving transverse to its length as
observed in laboratory frame.

plate has a circular hole with a diameter of one meter
centered on the y axis. The center of the meter stick
arrives at the laboratory origin at the same time in the
laboratory frame as the rising plate arrives at the plane
y = 0. Since the meter stick is Lorentz contracted in
the laboratory frame it will easily pass through the
hole in the rising plate. Therefore there will be no
collision between meter stick and plate as each con-
tinues its motion. However, someone who objects to
this conclusion can make the following argument: In
the rocket frame in which the meter stick is at rest the
meter stick is not contracted, while in this frame the
hole in the plate is Lorentz contracted. Hence the
full-length meter stick cannot possibly pass through
the contracted hole in the plate. Therefore there must
be a collision between the meter stick and the plate.
Resolve this paradox using your answer to the preced-
ing problem. Answer unequivocally the question: Will
there be a collision between the meter stick and
the plate? !

Fig. 78. Will the “meter stick”
pass through the ““one-meter-
diameter hole” without collision?

Fig. 77, B. Meter stick as observed in rocket frame.

54.** The thin man and the grid{

A certain man walks very fast—so fast that the
relativistic length contraction makes him very thin. In
the street he has to pass over a grid. A man standing
at the grid fully expects the fast thin man to fall
through the holes in the grid. Yet to the fast man he
himself has his usual size and it is the grid that has the
relativistic contraction. To him the holes in the grid
are much narrower than to the stationary man, and he
certainly does not expect to fall through them. Which
man is correct? The answer hinges on the relativity of
rigidity.

Idealize the problem as a one-meter rod sliding
lengthwise over a flat table. In its path is a hole one
meter wide. If the Lorentz contraction factor is ten,
then in the table (laboratory) frame the rod is 10
centimeters long and will easily drop into the one-

tW. Rindler, American Journal of Physics, 29, 365(1961).
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meter hole. Assume that in the laboratory frame the
meter stick moves fast enough so that it remains es-
sentially horizontal as it descends into the hole (no
“tipping” in the laboratory frame). Write an equation
in the laboratory frame for the motion of the bottom
edge of the meter stick assuming that r = ¢/ = 0 at the
instant that the back end of the meter stick leaves the
edge of the hole. For small vertical velocities the rod
will fall with the usual acceleration g. In the meter
stick (rocket) frame the rod is one meter long whereas
the hole is Lorentz contracted to a 10-centimeter

width so that the rod cannot possibly fit into the hole.
Transform the laboratory equations into the rocket
frame and show that the rod will “droop” over the
edge of the hole in that frame—that is, it will not be
rigid. Will the rod ultimately descend into the hole in
both frames? Is the rod really rigid or nonrigid during
the experiment? Is it possible to derive any physical
characteristics of the rod (e.g. its flexibility or com-
pressibility) from the description of its motion pro-
vided by relativity?




