Exploring Pandemic Data

March 24, 2020 Livestream

Christopher Wolfram, Stephen Wolfram, Bob Nachbar, etc.

Basic Data Exploration

Here is the epidemiological data from the Wolfram Data Repository:

In[*]:= rawCovidData = ResourceData["Epidemic Data for Novel Coronavirus COVID-19"];

Show the data available for each region:

In[*]:= rawCovidData[1 /* Keys]

Out[•]=

AdministrativeDivision	
Country	
GeoPosition	
ConfirmedCases	
RecoveredCases	
Deaths	

Show which countries have not reported cases so far:

10

10:00

104

10⁵

10⁶

107

Im[*]:= GeoListPlot[Complement[EntityList["Country"], Normal@Keys@rawCovidData[GroupBy["Country"], Total, "ConfirmedCases"]]]

Generate the time series of confirmed cases, totaled by country:

/n[*]:= countryTs = Normal[rawCovidData[GroupBy["Country"], Total, "ConfirmedCases"]];

China

Ethiodia

10⁹

Joanda

10⁸

Make a log-log plot of the latest reported number of cases as a function of population:

Basic Time Series

Find the raw numbers of confirmed cases for each country:

in[*]:= countryValues = #["Values"] & /@ countryTs;

Show growth for the 25 countries with the largest current number of reported cases:

$\label{eq:linear} $$ In[*]:= DateListPlot[TakeLargestBy[countryTs, #["LastValue"] \&, 25], PlotRange \rightarrow All] $$$

Make a log plot of the number of cases as a function of time, in each case starting when the number of cases first exceeded 100:

(Countries are indicated by tooltips)

```
In[*]:= ListLogPlot[KeyValueMap[Tooltip[#2, #1] &,
```

```
\texttt{DeleteCases[Select[GreaterThan[100]] /@N@countryValues, \{\}]], Joined \rightarrow True]}
```


Daily Growth Rates

Show the ratio of cases for each country on successive days (starting when each country first identified more than 100 cases):

In[•]:= ListLinePlot[

$$\label{eq:loss_leaded} \begin{split} & \mathsf{DeleteCases}\left[\mathsf{Ratios} \ensuremath{\,}^{@} \mathsf{Select}\left[\mathsf{GreaterThan}\left[100\right]\right] \ensuremath{/}^{@} \mathsf{N}^{@} \mathsf{countryValues}, \left\{ \right\} \right], \\ & \mathsf{PlotRange} \rightarrow \left\{ \left\{ 0, \ 30 \right\}, \ \left\{ 1, \ \mathsf{All} \right\} \right\} \right] \end{split}$$

Show daily ratios for countries with more than 10000 cases, smoothed with a radius of 2 days:

In[•]:= ListLinePlot[

Include all countries with more than 5000 cases:

United States

South Korea

Switzerland

United Kingdom

France

Find the mean daily ratio across countries with more than 5000 cases:

20

25

30

15

10

5

In[•]:= ListLinePlot

1.2

1.0└ 0

Find the mean daily ratio across all countries reporting cases:

Find the mean across all countries, with the values for each country starting with the country first reported more than 50 cases:

```
In[•]:= ListLinePlot
```


Average over countries with more than 5000 cases, but do not take the mean across days:

Average over all countries reporting cases, but do not take the mean across days:

In[*]:= ListLinePlot [I RaggedMeanAround + [

```
Values@DeleteCases[Ratios /@ Select[GreaterThan[100]] /@N@countryValues, {}]]
```


Investigating Results

We wanted to understand the seemingly linear decrease in average daily ratios.

Find the linear term in a fit of the first 30 days of the data:

```
In[*]:= fitSlope = m /. FindFit RaggedMeanAround +
```

```
Values[DeleteCases[Ratios /@ Select[GreaterThan[100]] /@ N@countryValues,
        {}]][[All, ;; UpTo[30]]]], m * x + b, {m, b}, x]
```

 $Out[\circ] = -0.0090 \pm 0.0005$

This corresponds to change of average daily ratio with a slope of about 1 in 111 days:

In[*]:= 1 / fitSlope

Out[•]= -111.±6.

Summarizing Country Daily Ratio Data

Show daily ratio by country, together with the average over all reporting countries:

```
In[•]:= Show
       ListLinePlot[DeleteCases[MeanFilter[Ratios[#], 2] & /@
           Select[GreaterThan[100]] /@N@countryValues, {}],
         PlotRange \rightarrow \{\{0, 30\}, \{1, All\}\}, PlotTheme \rightarrow "DashedLines"],
       ListLinePlot RaggedMeanAround + [Values@
           DeleteCases[Ratios /@ Select[GreaterThan[100]] /@ N@countryValues, {}]],
         PlotStyle → Directive[Thick, Red]
      }]
                                                                      China
                                                                                            Switzerla
     1.8
                                                                                           - United K
                                                                      Italy
                                                                      Spain
                                                                                            Netherla
     1.6
                                                                      Germany
                                                                                            Austria
Out[•]=
     1.4
                                                                                            Belgium
                                                                      Iran
                                                                      United States
                                                                                            Norway
     1.2
                                                                                            Portugal
                                                                      France
     1.0
                                                                      South Korea
                        10
                                         20
                                15
```

Include only countries with more than 5000 cases reported:

Compare results for all countries, and countries with more than 5000 cases:

Show how many countries are included in the averages for each day, including only countries with more than 5000 current cases:

Show how many countries are included in the averages for each day, including all countries reporting cases:

In[#]:= ListLinePlot@Total@PadRight[Sign[Values@

```
DeleteCases[Ratios /@ Select[GreaterThan[100]] /@ N@countryValues, {}]]]
```


Possible Model for Results

In the standard SIR continuum epidemiological model, the number of infected people is i[t], and there is a "force of infection" β .

Solve assuming an infinite supply of susceptible people, and fixed force of infection; the result is a pure exponential:

```
\begin{aligned} & \textit{In[*]:= } \mathsf{DSolve[i'[t] == } \beta * i[t], i[t], t] \\ & \textit{Out[*]= } \left\{ \left\{ i[t] \rightarrow e^{t\beta} c_1 \right\} \right\} \end{aligned}
```

Solve assuming a force of infection that varies linearly with time:

```
\begin{split} & \textit{In[e]:= DSolve[i'[t] == (m * t + b) * i[t], i[t], t]} \\ & \textit{Out[e]:=} \left\{ \left\{ i[t] \rightarrow e^{b t + \frac{m t^2}{2}} c_1 \right\} \right\} \end{split}
```

$$In[*]:= D\left[Log\left[e^{bt+\frac{mt^2}{2}}c_1\right], t\right]$$

Out[]] b + mt

A typical model is that the distribution of times between becoming infected and showing symptoms is an exponential distribution.

Show the PDF for an exponential distribution:

In[*]:= Plot[PDF[ExponentialDistribution[1/7], t], {t, 0, 30}]

The ratio of successive values will be given roughly by the log of the PDF:

More accurately, it is the ratio of PDF to CDF:

In[*]:= Plot[Log[PDF[ExponentialDistribution[1 / 7], x] /

Network-Based Modeling

The continuum SIR model does not accurately represent human contacts, especially when they are limited by social distancing. It is better to consider a network, although it is not clear what the correct network should be.

Generate a typical example of network that models certain features of human networks:

In[*]:= RandomGraph[WattsStrogatzGraphDistribution[500, 0.1, 5]]

At larger scales, human networks will tend to reflect actual geographical (i.e. spatial) relations, and so will have features of random planar networks.

Generate an example of a random planar network:

In[*]:= MeshConnectivityGraph[DelaunayMesh[RandomPoint[Disk[], 1000]]]

Make larger examples of these types of graphs:

```
In[*]:= g1 = RandomGraph[WattsStrogatzGraphDistribution[10000, 0.1, 5]]
```

```
Out[∗]= Graph [ III Wertex count: 10 000
Edge count: 50 000
```

```
In[*]:= g2 = MeshConnectivityGraph[DelaunayMesh[RandomPoint[Disk[], 100000]]]
```

```
      Out[*]=
      Graph
      Image: Wertex count: 100 000

      Edge count: 299 826
```

For the model human network, the graph diameter is still quite small:

```
In[•]:= GraphDiameter[g1]
```

Out[•]= 10

Starting from one node in the graph (i.e. one person) this shows the number of nodes reached after n steps in the random planar graph:

Data from Actual Contagion Networks

Singapore has carefully tracked cases, and generated a network giving information on contagion. Import the data:

In[*]:= rawGraph = Import["https://co.vid19.sg/api/cases/network_graph", "RawJSON"];
Show the network from this data:

Find cases of person-to-person transmission, giving the case numbers involved:

```
In[*]:= transmissions = Map[ToExpression, StringDrop[#, 5] & /@
Select[DeleteMissing[Lookup[{"from", "to"}] /@ rawGraph["edges"], 1, 2],
AllTrue[StringMatchQ["Case " ~~ ___]]]]
```

Plot case numbers for transmission pairs:

 $[le] := ListPlot[transmissions, Epilog \rightarrow \{Red, InfiniteLine[\{0, 0\}, \{1, 1\}]\}]$

This data seems to indicate that most transmissions are found by backtracing. The analysis should be repeated with actual report times included.

Analysis of Government Responses

Import a dataset of measures implemented by governments:

Show counts of measures implemented:

In[*]:= governmentMeasures[Counts /* ReverseSort, "Measure"]

	Introduction of quarantine policies
	Travel restrictions
	Limit public gatherings
	Health screenings in airports and border crossings
	Schools closure
	Flights suspension
	Border closure
	Economic measures
	Public services closure
	Strengthening the public health system
	General recommendations
	Awareness campaigns
	Visa restrictions
	General lockdown
	State of emergency declared
	Emergency administrative structures activated or established
	Additional health/documents requirements upon arrival
	Border checks
	Arrests for noncompliance
	Fines for noncompliance
	不 ∧ rows 1-20 of 32 ∨ ⊻

Show a word cloud of measures taken:

In[*]:= governmentMeasures[WordCloud, "Measure"]

Show a date histogram of when measures were implemented:

In[*]:= governmentMeasures[DateHistogram, "ImplementationDate"]

In[*]:= minImplementationTime =

Show a histogram of when the first measure was implemented for each country:

In[*]:= DateHistogram[minImplementationTime]

Show a histogram of the average time when measures were implemented:

In[*]:= meanImplementationTime = DateObject /@ Select[
Normal[governmentMeasures[GroupBy["Country"], All, "ImplementationDate"][
All, DeleteMissing /* Mean, AbsoluteTime]], NumberQ];

In[*]:= DateHistogram[meanImplementationTime]

Compute when general lockdown was implemented in each country:

In[*]:= lockdownTimes =

```
Select[Normal@governmentMeasures[Select[#Measure === "General lockdown" &] /*
GroupBy[Lookup["Country"] → Lookup["ImplementationDate"]],
DeleteMissing /* Map[AbsoluteTime] /* Mean /* DateObject], DateObjectQ];
```

Find how many countries have implemented general lockdown so far:

In[*]:= Length[lockdownTimes]

Out[•]= 32

Make a histogram of when general lockdown was implemented:

```
In[*]:= DateHistogram[lockdownTimes, 1 day]
```


Comparing with Cases

Compute when each country first reported more than 100 cases:

```
In[*]:= over100 = DeleteMissing[
```

```
SelectFirst[#["DatePath"], #[[2]] > 100 &] & /@ countryTs][[All, 1]];
```

Make a date histogram of when more than 100 cases were first reported:

In[*]:= DateHistogram[over100]

Compare when countries first implemented measures vs. when they first reported 100 cases:

In[*]:= ListPlot [Map[AbsoluteTime,

Merge[KeyIntersection[{over100, minImplementationTime}], Identity], {2}],
AxesLabel → {"over 100", "min implementation time"}, ... +]

Compare the average of when countries implemented their various measures vs. when they first reported 100 cases:

min implementation time

In[*]:= ListPlot [Map[AbsoluteTime,

Merge[KeyIntersection[{over100, meanImplementationTime}], Identity], {2}],
AxesLabel → {"over 100", "mean implementation time"}, ... +]

Compare the difference in time between reporting 100 cases, and the first measure being implemented:

Compare the difference in time between reporting 100 cases, and the average of when measures were implemented:

In[*]:= Histogram[Merge[KeyIntersection[{over100, meanImplementationTime}],

Posted Graphic

