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Abstract Planck units of length, mass, and time are fundamental constants of nature. Tra-
ditional constants including Planck’s constant, the gravitational constant, the elementary
charge, and many others are comprised of these three fundamental units. Physics equations
are functions in which maximum potentials defined by the Planck units are reduced by
one or more proportionality operators, producing observed quantities of natural phenomena.
Natural symmetries constrain the relationships between length, mass, and time, yielding
the physical dynamics of momentum, action, force, and energy. The Planck units quantify
mechanical, gravitational, and electromagnetic properties of the universe and offer a com-
mon language for interpreting the standard model interactions. Units associated with the
electromagnetic interaction are translated into units of length, mass, and time, including the
coulomb, ampere, volt, tesla, henry, weber, farad, ohm, and siemen.

Keywords Planck units · natural units · fundamental constants · physical constants ·
Planck’s constant · gravitational constant · particle mechanics

1 Introduction

At the close of the 19th century, Max Planck unveiled the constant of proportionality that
bears his name today [1–3]. Planck’s discovery ushered in a new era of quantum physics
and ~ became ubiquitous in equations describing the physical universe on small scales. At
the same time, Planck showed that combining ~, G, and c in the right proportions creates
natural quantities of length, mass, and time.

More than a century later, the system of derived Planck units—featuring enigmatic ratios
of the same three constants—has expanded deeper into the fields of quantum mechanics,
thermodynamics, electromagnetism, and gravity [4–9]. Despite sharing the same building
blocks, these formulas offer little insight into the physical meaning of ~ and G, or the Planck
units they define.

A deeper examination of the physical constants and the entire system of Planck units
reveals a beautifully simple structure that warrants re-evaluation of what is fundamental.
The opportunity eluding Planck at the time, and many others since, is recognizing that the
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fundamental ingredients of the universe are measured in units of length, mass, and time—
not in quantities of Planck’s constant or the Gravitational constant. From the relationships
between these three fundamental units emerge the symmetries on which modern day phys-
ical theories are built. The fundamental Planck units not only explain the entire system of
Planck units more simply and elegantly; they redefine the most important physical constants
and equations in ways that expand our understanding of the natural universe.

Planck’s constant and the gravitational constant can be stated in Planck units as

~ = lPmPc (1)

G =
lP

mP
c2. (2)

Similarities between the two constants are immediately apparent in these simple forms,
most notably in the relationship between length and mass. The product form of the rela-
tionship found in Planck’s constant is ideal for determining the extensive properties of ele-
mentary particles, whereas the quotient form of the gravitational constant is better suited for
calculating the intensive properties of large gravitational bodies.

Equations 1 and 2 can be derived from the equations of Planck length and Planck mass,
shown in appendix A. The composition of Planck’s constant and the gravitational constant
are demonstrated in table 1 using CODATA values.

Table 1: Planck’s constant and the gravitational constant are comprised of fundamental units of length, mass,
and time.

Constant Unit Value

~ = lP 1.616255 × 10−35 m
× mP 2.176434 × 10−8 kg
× c 299, 792, 458 m/s
= 1.054572 × 10−34 kgm2/s2

G = lP 1.616255 × 10−35 m
÷ mP 2.176434 × 10−8 kg
× c 299, 792, 458 m/s
× c 299, 792, 458 m/s
= 6.67430 × 10−11 m3/kgs2

The knowledge that ~ and G are comprised of more fundamental quantities is a basis
for reinterpreting physical laws explained by these two constants. For all the equations that
rely on Planck’s constant and the gravitational constant, it is in the relationships between a
handful of Planck units that we obtain definitive predictions about the world.

Table 2 gives an extensive list of physical constants restated in fundamental quantities
of length, mass, and time. Each constant is defined in elementary form using the three fun-
damental Planck units, and additional forms are given in units of Planck energy, Planck
momentum, and the speed of light.
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Table 2: Traditional constants are composites of more fundamental quantities of length, mass, and time. The
elementary form of these constants reveals physical meaning that was previously obfuscated by the composite
values.

Constant Sym Std form Elem form Alt forms MKS value EM value

Planck length lp

√
~G
c3 [1] lp - 1.616255 × 10−35m -

Planck mass mp

√
~c
G

[1] mp - 2.176434 × 10−8kg -

Planck time tp

√
~G
c5 [1] tp - 5.391247 × 10−44 s -

Planck momentum pp

√
~c3

G
[4, 5]

lpmp

tp
mpc 6.524784 kgm

s -

Planck energy Ep

√
~c5

G
[4, 9]

l2pmp

t2p
mpc2 1, 956, 081, 000 kgm2

s2 -

Reduced Planck const ~ -
l2pmp

tp
lp pp, Eptp 1.054571 × 10−34 kgm2

s -

Gravitational const G -
l3p

mpt2p

lp

mp
c2 6.67430 × 10−11 m3

kgs2 -

Speed of light c
lp

tp

lp

tp
- 299, 792, 458 m

s -

Planck charge qp
√

4πε0~c [4, 8, 10] tp - 5.391247 × 10−44 s 1.876 × 10−18C

Elementary charge e, q
4π~α
µ0c

[11] tp
√
α - 4.605448 × 10−45 s 1.602 × 10−19C

Electric permittivity ε0
1

µ0c2 [11]
t4p

4πl3pmp

tp

4πppc2 7.315968 × 10−63 s4

kgm3 8.854 × 10−12 F
m

Coulomb const ke
1

4πε0

l3pmp

t4p

pp

tp
c2 1.087723 × 1061 kgm3

s4 8.988 × 109 Nm2

C2

Magnetic permeability µ0
4πα~
e2c

[11] 4π
lpmp

t2p
4π

pp

tp
1.520851 × 1045 kgm

s2 1.256 × 10−6 N
A2

Voltage Vp

√
c4

4πGε0
[12]

l2pmp

t3p

Ep

tp
,

Ep

qp
3.628253 × 1052 kgm2

s3 1.043 × 1027V

Current Ip

√
4πε0c6

G
[12]

tp

tp

qp

tp
,

tp

qp
1 3.479 × 1025A

Inductance Lp
1

4πε0

√
~G
c7 [12]

l2pmp

t2p
Ep 1, 956, 081, 000 kgm2

s2 1.616 × 10−42H

Magnetic inductance Bp

√
c5

4πε0~G2 [12]
mp

t2p

pp

lptp
7.488021 × 1078 kg

s2 2.152 × 1053T

Continued on next page
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Table 2 (continued)

Constant Sym Std form Elem form Alt forms MKS value EM value

Conductance Gp 4πε0c
t3p

l2pmp

tp

Ep
,

qp

Ep
2.756147 × 10−53 s3

kgm2 0.03336S

Impedance Zp
1

4πε0c
[12]

l2pmp

t3p

Ep

tp
,

Ep

qp
3.628253 × 1052 kgm2

s3 29.98Ω

Impedance of vacuum Z0 µ0c [11] 4π
l2pmp

t3p
4π

Ep

tp
4.559397 × 1053 kgm2

s3 376.7Ω

Capacitance Cp 4πε0

√
~G
c3 [12]

t4p
l2pmp

t2p
Ep

1.485907 × 10−96 s4

kgm2 1.798326 × 10−45F

Fine structure α
e2

4πε0~c
[11] - - .0072973525693 -

Rydberg constant R∞
α2mec

2h
[11]

meα
2

4πlpmp
- 10973732 1

m -

Rydberg energy hcR∞
1
2

meα
2c2 [11]

meα
2l2p

2t2p

1
2

meα
2c2 2.179872 × 10−18 kgm2

s2 -

Magnetic flux quantum φ0
2π~
2e

[11]
πl2pmp
√
αt2p

π
√
α

Ep 7.193730 × 1010 kgm2

s2 2.067834 × 10−15Wb

von Klitzing RK
2π~
e2 [11]

2πmpl2p
αt3p

2πEp

αtp
3.124008 × 1055 kgm2

s3 25, 812.81Ω

Josephson KJ
2e
h

[11]

√
αt2p

πl2pmp

√
α

πEp
1.390100 × 10−11 s2

kgm2 4.835978 × 1014 Hz
V

Bohr magneton µB
e~

2me
[11]

√
α

2
mp

me
l2p - 2.665808 × 10−49m2 9.274010 × 10−24 J

T

Fermi coupling
GF

~3c3 [11]
GF t6p
l9pm3

p

GF

l3pE3
p

1.166379 × 10−5Ge/V2 -

Conductance quantum G0
2e2

2π~
[11]

αt3p
πl2pmp

αtp

πEp
6.402033 × 10−56 s3

kgm2 7.748092 × 10−5S

Linear mass density
lP
mP

-
lp

mp
- 7.426161 × 10−28 m

kg -

Quantum constant lPmP - lpmp - 3.517672 × 10−43kgm -

Force Fp
c4

G
mplp

t2p

pp

tp
,

Ep

lp
1.210255 × 1044 kgm2

s2 -

Acceleration ap

√
c7

~G
lp

t2p

c
tp

5.560725 × 1051 m
s2 -

α=Fine structure constant; A=ampere; C=coulomb; EP=Planck energy; F=farad; H=henry; kg=kilogram;
lP=Planck length; m=meter; me=electron mass; mP=Planck mass; pP=Planck momentum; N=newton; s=second;
tP=Planck time; S=siemens; T=tesla; W=weber; V=volt; Ω=ohm
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On the Fundamental Constants of Nature 5

2 Functions and Equations

The benefits of replacing traditional constants with Planck units becomes clear in the refor-
mulated versions of physical equations. Each of the following equations substitutes Planck
length, mass, and time for ~, G, and the Coulomb constant ke. Insights gained from the
equations are then refined into a new physical model that is consistent with experimental
observations while offering new insights into quantum mechanics, electromagnetism, and
gravity.

2.1 Photon Energy

The equation for photon energy

E = h f

can be expressed in Planck units according to equation 1. Substituting 2πlPmPc for h, and
c/λ for f gives

E = 2πlPmPc
( c
λ

)
. (3)

The equation can be regrouped and simplified to emphasize important ratios

E =

(
lP

o

)
mPc2

=

(
lP

o

)
EP

where o = 2πλ. The restated equation reveals how Planck’s constant transforms a photon’s
wavelength into a specific quantity of energy. Out of the fundamental Planck units concealed
within Planck’s constant, a dimensionless operator is generated from the ratio of Planck
length to photon wavelength. The operator reduces the maximum quantity of Planck energy
into the correct amount. We can represent the proportionality operator using the symbol βλ
which simplifies the function to

E = βλEP

where βλ is the reduction due to the photon’s wavelength and EP is the Planck energy.

2.2 Compton Wavelength

The reduced Compton wavelength formula

oc =
~

m0c
(4)

can be re-stated in Planck units as

oc =
lPmPc
m0c

.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2020                   doi:10.20944/preprints202006.0017.v1

https://doi.org/10.20944/preprints202006.0017.v1


6

Grouping related terms again highlights the key proportionalities

oc =

(
mP

m0

) (c
c

)
lP

=

(
mP

m0

)
lP (5)

where m0 is the rest mass.
The value of c embedded in Planck’s constant isn’t required by the Compton wavelength

formula, so the function removes it with a factor of c in the denominator. What remains is a
dimensionless operator in the proportion of rest mass to Planck mass. This operator acts on
the Planck length producing the proper wavelength.

We can represent the simplified operation as

oc =
lP

βm

where βm represents the ratio of rest mass to Planck mass.

2.3 de Broglie Wavelength

The de Broglie formula adds a second operator to the mass operator found in the Compton
formula. The reduced de Broglie formula

o =
~

m0v

can be written in Planck units as

o =

(
mP

m0

) (c
v

)
lP. (6)

The de Broglie formula has the same mass operator as the Compton wavelength formula,
but instead of removing the value of c in the numerator, it generates a second operator in
the ratio of c to v. The two operators act on the Planck length producing the wavelength of
a massive particle in motion. The de Broglie function can be summarized as

o =
lP

βm βv

where βm represents the ratio of rest mass to Planck mass, and βv is the ratio of velocity to
the speed of light.
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On the Fundamental Constants of Nature 7

2.4 Schwarzschild Radius

The Schwarzschild radius is calculated using the gravitational constant. Equations 1 and 2
show that either ~ or G could be used with the right modifications. We can convert between
the two constants in the following way

G =
lP

mP
c2 =

 c
m2

P

 lPmPc =
c

m2
P

~.

The gravitational constant behaves like Planck’s constant in that it produces operators
from the ratios of inputs to Planck units embedded in the constant. The formula for deter-
mining the Schwarzschild radius

rs =
2GM

c2

can be stated in Planck units as

rs =2
(

M
mP

) (c
c

) (c
c

)
lP

=2
(

M
mP

)
lP. (7)

The Schwarzschild radius formula doesn’t require two values of c embedded in the
Gravitational constant, so it removes them with two values of c in the denominator. What
remains is a mass operator acting on the Planck length. The restated function demonstrates
how the simple proportion of a gravitational body’s mass to the Planck mass determines its
Schwarzschild radius.

2.5 Black Hole Temperature

The equation for black hole temperature

T =
~c3

8πGkBM

can be written in terms of energy

kBT =
~c3

G
1

8πM
and stated in Planck units as

E =
(lPmPc)c3(

lPc2

mP

) 1
8πM

.

The simplified equation

E = m2
Pc2 1

8πM
can be written as a mass operator and a constant acting on the Planck energy

E =
1

8π

(mP

M

)
EP.

The restated formula gives a more intuitive explanation of black hole thermodynamics
than we get from the traditional constants.
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2.6 Coulomb’s Law

Coulomb’s law
F = ke

q1q2

r2

can be written as a function in natural units

F =
pP

tP
c2 t1t2

l2

=FP c2 t1t2
l2

(8)

where FP is the Planck Force.
The translation of traditional constants into Planck units in table 2 reveals that electric

charge is naturally quantified in units of time. Using the coulomb unit conversion in table 12,
charge is entered in units of seconds and distance in meters. Pairing the inputs with corre-
sponding Planck units found in c2 embedded in the Coulomb constant yields four operators
acting on the Planck force

F =

(
lP

l

) (
t
tP

) (
lP

l

) (
t
tP

)
FP.

The four operators can be restated using the relationship

c
v

=

lP

tP

l
t

=

(
lP

l

) (
t
tP

)

and simplified as

F =

(
c2

v2

)
FP.

Here we see that Coulomb’s constant behaves like the other functions; it contains the
embedded value c2 to formulate operators out of inputs of charge and distance which act
on the Planck force. The operator c2/v2 and the maximum force potential represent a mag-
nificent correspondence with general particle mechanics. Furthermore, the quantification of
electric charge in seconds suggests a mechanical foundation underlying electromagnetism
that is hidden by traditional coulomb units.

3 A New Foundations Model of Physics

3.1 Planck Potentials

The equations in section 2 reveal a general formula for calculating the physical properties of
elementary particles and systems. This formula establishes a basis in the maximum potentials
of certain physical properties quantified by the Planck units. The function transforms inputs
of measured values into one or more proportionality operators based on their ratios to the
Planck unit values. The magic of the function is that a simple reduction from the maximum
potential determines the output.

The three fundamental Planck units of length, mass, and time represent maximum po-
tentials, and combinations of these units form additional potentials. Each Planck unit or
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On the Fundamental Constants of Nature 9

combination of units has a finite limit at its maximum potential, and an arbitrarily small
potential asymptotically approaching zero. The finite, maximum potential provides a defini-
tive basis for calculating physical properties whereas the asymptotic limit offers no basis.
By setting the maximum potential equal to one, any unit distance from the Planck scale can
be quantified as the ratio of one divided by the distance. The versatility of this ratio is its
applicability across different unit types.

Figure 1 illustrates the maximum potentials of length, mass, and time. In SI units, quan-
tities of length and time are inversely proportional to their potentials while mass is pro-
portional to its potential. Section 2 showcased the simplicity and versatility of the Planck

Fig. 1: Planck units represent maximum potentials. Length, mass, and time have definitive maximum poten-
tials at the Planck scale and arbitrarily small potentials asymptotically approaching zero

units in explaining the physical universe. Equations written in terms of these fundamental
units yield new insights into physical mechanics previously hidden by the larger structure of
composite constants.

The following sections propose a New Foundations Model of physics incorporating the
principles of maximum potential and proportionality into the descriptions of quantum me-
chanics, gravity, and electromagnetism. It attempts to explain physical dynamics using the
additional information found in the relationships between length, mass, and time. In addi-
tion, the model attempts to reduce the level of abstraction found in descriptions of quantum
mechanics that rely predominantly on mathematical formulations.

The model does not try to solve—or even address—the measurement problem. Rather, it
presumes that the properties of elementary particles characterized mathematically by wave
functions and matrices are genuine physical properties, and not abstract quantities in config-
uration space. The formulas and explanations describe the fluid, deterministic evolution of
particle oscillations without incorporating the stochastic localization brought on by obser-
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vation and measurement. The physical descriptions, therefore, cannot be directly measured,
but are inferred from equations and from the statistics of multiple measurements.

The model has shortcomings. Its scope is limited to physical properties in their simplest
form—without incorporating complex interactions encountered in all but the most isolated
experiments. But just as the Bohr model of the hydrogen atom revealed underlying principles
on which more complex descriptions of the atom were later constructed, a New Foundations
Model framed in terms of the Planck units may inform more complex theories with fewer
gaps subject to interpretation.

I’ll introduce the model using the basic mechanics of elementary particles. A univer-
sal mechanics function describes the maximum potential of elementary particles, and four
proportionality operators reduce this potential into everyday quantities of mass, momentum,
and energy. I’ll also define two symmetries that conserve maximum potentials and constrain
the relationships between quantities of length, mass, and time. Physical dynamics including
action and force emerge from these constraints.

Following a demonstration of the mechanical principles, I’ll introduce the gravitational
and electromagnetic functions. I’ll show that gravitational and electromagnetic field poten-
tials share the same maximum potentials as particle mechanics, and the same principles of
proportionality determine the strengths of the potentials. I’ll finish by comparing the relative
strengths of the different forces in terms of their proportionality operators.

The function describing basic mechanical properties of the elementary particles is

Energy = mP

(
lP
tP

) (
lP
tP

)
.

The function consists of three parts progressively known as mass, momentum, and en-
ergy.

3.2 Mass

The relationship between mass and wavelength is described by the Compton and de Broglie
formulas in section 2. Compton scattering gives the wavelength of a photon with energy
equal to the rest mass of a massive particle [13–15], while the de Broglie formula gives
the wavelength of the massive particle. The two formulas coincide at the limit of the mas-
sive particle’s maximum velocity potential c. According to equations 5 and 6, the massive
particle’s wavelength equals the photon wavelength when each is traveling at a rate of c.

Re-arranging 5 provides the relationship between a particle’s rest mass and its Compton
wavelength, following from the new definition of Planck’s constant

oCm0 = lPmP. (9)

It is evident that this relationship holds for the rest masses and Compton wavelengths of
the charged leptons. Table 3 gives the reduced Compton wavelengths and rest masses of the
electron, muon, and tau particles. The product of the two is equal to the constant lPmP, or
3.52 × 10−43kgm in each case.

We also get from equation 9 a relationship between the proportions of wavelength and
mass to their maximum potentials, which in section 2 I showed is instrumental for calculat-
ing physical properties. The equation shows that the proportion of Planck length to Compton
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Table 3: The Compton wavelengths and rest masses of the charged leptons conserve the value 3.52 × 10−43

Lepton oC (m) m0 (kg) oCm0 (kgm)

e 3.8616 × 10−13 9.1094 × 10−31 3.5177 × 10−43

µ 1.8676 × 10−15 1.8835 × 10−28 3.5177 × 10−43

τ 1.1105 × 10−16 3.1675 × 10−27 3.5177 × 10−43

wavelength is equal to the proportion of rest mass to Planck mass. Re-arranging 9 gives an
equality between these ratios

lP

oC
=

m0

mP
.

According to the de Broglie formula, this equivalence holds true for all combinations of
a massive particle’s wavelength and momentum. From 6 we get the following relationship
for a massive particle

om0

(v
c

)
= lPmP

where o is the de Broglie wavelength. Multiplying the rest mass by v/c gives a general
formula for the wavelength and mass of a particle at any velocity

om = lPmP (10)

where m is the rest mass multiplied by v/c. This quantity of inertial mass is traditionally
treated as momentum in units of kgm/s, but I’ll show the significance of treating it as a
form of mass throughout this paper. The inertial mass m is considered a physical property
of bosons and fermions quantified by the inverse particle wavelength, and determines the
energy of motion in both types of particles. Inertial mass is given here in non-relativistic
terms.

It is important to distinguish between the Compton wavelength as a measure of rest
energy, quantified by electromagnetic radiation, and the Compton wavelength of a massive
particle. As a measure of rest mass, the Compton formula is not giving a physical description
of a massive particle’s wavelength. That’s given in 6, which shows that the wavelength of a
massive particle approaches the Compton wavelength as its velocity approaches c.

Given that lPmP is constant, we can quantify the product of wavelength and mass as

om = 3.52 × 10−43kgm (11)

where m is the inertial mass.
Since the product of wavelength and mass is invariant to changes in the two terms,

the quantity 3.52 × 10−43kgm is conserved. A fixed quantity of mass-wavelength can be
illustrated as an inverse function of the two, shown in figure 2. We can determine the mass
and wavelength of a particle using the formulas

m =
3.52 × 10−43

o
kgm (12)

and

o =
3.52 × 10−43

m
kgm. (13)
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Fig. 2: Particle wavelength and inertial mass are inversely related, conserving the product of wavelength and
mass, 3.52 × 10−43kgm.

The curve in figure 2 represents possible combinations of wavelength and mass up to
the Planck scale, which is shown at the natural unit coordinate (1,1). From the Planck scale,
as units of length increase, units of mass decrease reciprocally so that m = 1/o.

The conservation of a particle’s mass-wavelength gives a valuable physical constant I
call the quantum constant, equal to 3.52 × 10−43kgm. According to this proposal, the re-
lationship between a particle’s wavelength and its inertial mass is a conserved property of
elementary particles including bosons and fermions.

3.3 Momentum

The second component of the particle mechanics function is the maximum ratio of length to
time. Combining this ratio with the Planck mass gives the maximum momentum potential

pP = mP
lP

tP
.

Momentum quantifies the inertial strength of both massive and massless particles. The
traditional formula for photon momentum

p =
h
λ

can be re-stated in Planck units as

p =

(
lP

o

)
pP.

This form of the equation identifies the Planck momentum embedded in Planck’s con-
stant as the maximum momentum potential, which is obtained when the proportionality
operator lP/o is equal to one. The operator demands that a photon’s momentum is inversely
proportional to its wavelength.

At the Planck scale, the maximum momentum potential distributes the conserved quan-
tum constant over the smallest possible distance, determined here using the Planck time.
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On the Fundamental Constants of Nature 13

From the definition of Planck momentum we can arrange an equality that is useful for de-
scribing elementary particle mechanics

lPmP = pPtP. (14)

Figure 3 illustrates the relationships between the Planck units in equation 14 including
important ratios between them. The figure shows that the relationship between Planck mass

Fig. 3: The relationship between Planck mass and Planck momentum is governed by the speed of light. The
product of Planck length and mass is equal to the product of Planck momentum and Planck time.

and Planck momentum is governed by the ratio of Planck length to Planck time—the speed
of light. The figure also shows an equivalent relationship between the product of Planck
momentum and Planck time, and the product of Planck length and Planck mass. Each of
these values is equal to the quantum constant, 3.52 × 10−43kgm/s.

Equation 14 can be modified to show the relationship between wavelength, mass, time,
and momentum at any scale. Replacing lPmP with om, according to 10, retains the conserved
value of the quantum constant in the numerator, so that the particle’s momentum is deter-
mined in units of kgm/s by the time component in the denominator. A consistent definition
of momentum for particles with and without rest mass follows when we treat momentum as
quantifying a particle’s spatial distribution without regard to its velocity. In the next section
I’ll show why momentum was made to align with velocity in dimensions of kgm/s.

To establish a consistent description of momentum for massive and massless particles,
I’ll refer to the time component of momentum as Tλ, defined as o/c. For particles with no
rest mass, Tλ is equal to the particle’s period T .

According to the proposed model, the following relationship is applicable at all scales
and represents a fundamental symmetry of nature in the conservation of mass and momen-
tum

om = pTλ (15)
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where o is particle wavelength, m is the corresponding mass, and Tλ re-quantifies the inertial
mass in traditional units of momentum. Because p is the relationship between the other
three quantities, and because the quantum constant om is conserved, the quantity pTλ is also
conserved.

We can arrange 15 into a definition of momentum using the three physical quantities of
length, mass, and time

p =
om
Tλ

kgm/s.

Wavelength Operator
In sections 2 and 3.3, I showed that the operator lP/o reduces the Planck momentum and

Planck energy in the right proportions to produce a photon’s momentum and energy. This
operator is defined as βλ, the wavelength operator. Figure 4 illustrates how the wavelength
operator transforms a photon proportionally. The operator modifies each of the terms by the

Fig. 4: Electromagnetic radiation is quantized by a reduction operator applied to the maximum momentum
and energy potentials. The operator modifies a photon’s wavelength mass, and time, producing proportional
quantities of momentum and energy.

same ratio, increasing the photon’s wavelength, decreasing its inertial mass (sometimes re-
ferred to as effective mass), and increasing Tλ. Because om is conserved, only one instance
of the operator is needed to obtain the right quantity of momentum. However, the conser-
vation of om shown in 11 tells us that all three values change. We also know that Tλ must
increase with the wavelength to not exceed the speed of light.

While the operator modifies a photon’s wavelength, inertial mass, time, momentum, and
energy, it does not change its velocity, which remains at the maximum velocity potential c.

3.3.1 Photon Mechanics

The New Foundations Model can be demonstrated using known properties of photons. Ta-
ble 4 gives the properties of several known photons, including photons of the Compton
wavelength for the electron, muon, and tau particles; a photon emitted during the hyperfine
transition of Caesium 133 according to the SI definition of a second; and the average tran-
sition of an electron from the first to second orbital of a hydrogen atom. The properties of
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each photon were calculated by applying the wavelength operator βλ (lP/λ) to Planck units
of length, mass, time, momentum, and energy.

Table 4: Photon properties are calculated by applying the wavelength operator lP/o to Planck units of length,
mass, time, momentum, and energy. Values agree with standard formulas. The quantum constant om is con-
served in each case.

Photon βλ(lP/o) o (m) m (kg) Tλ,T (s) p (kgm/s) E (kgm2/s2) om, pTλ

λP 1 1.62 × 10−35 2.18 × 10−8 5.39 × 10−44 6.52 1.96 × 109 lPmP

λC , τ 1.46 × 10−19 1.11 × 10−16 3.17 × 10−27 3.70 × 10−25 9.50 × 10−19 2.85 × 10−10 lPmP

λC , µ 8.65 × 10−21 1.87 × 10−15 1.88 × 10−28 6.23 × 10−24 5.65 × 10−20 1.69 × 10−11 lPmP

λC 4.19 × 10−23 3.86 × 10−13 9.11 × 10−31 1.29 × 10−21 2.73 × 10−22 8.19 × 10−14 lPmP

λ1s−2p 1.33 × 10−28 1.22 × 10−7 2.89 × 10−36 4.06 × 10−16 8.67 × 10−28 2.60 × 10−19 lPmP

∆vCs 4.96 × 10−34 3.26 × 10−2 1.08 × 10−41 1.09 × 10−10 3.23 × 10−33 9.69 × 10−25 lPmP

Applying the wavelength operator βλ to the Planck units produces values of momen-
tum and energy that agree with traditional formulas. The table shows that values of photon
momentum and energy are accounted for entirely by the wavelength operator, while the pho-
ton’s velocity remains constant at the maximum velocity potential c. The table also shows
that om and pTλ are conserved for each photon according to 15.

The presence of a mass term in the equations is interesting. While photons do not interact
with the Higgs field in the way that fermions and W± and Z0 bosons acquire rest mass, the
term offers evidence for a broader definition of mass inclusive of inertial mass. There are
compelling reasons to do so [13, 16], including

1. Einstein’s formula for mass energy equivalence, E = mc2 produces the correct en-
ergy of a photon when we use the inertial mass in table 4.

2. The conservation of mass-wavelength in 10 and 15 is valid for bosons and fermions
with respect to inertial mass. We can treat inertial mass as an underlying symmetry
that is partially broken with rest mass, which bifurcates a particle’s kinetic energy of
motion and its latent rest energy.

3. Planck’s constant, which is used in equations determining the momentum and energy
of massive and massless particles, includes a quantity of Planck mass as shown in
equation 1.

4. According to the New Foundations Model, the proportionality operator lP/o affects
quantities of length, mass, and time in the same proportions. The collective consis-
tency of this approach is demonstrated throughout the model.

Figure 4 illustrates in a conceptual way the attributes of a photon according to 15. The
wavelength operator lP/o quantifies an increase in wavelength from the minimum Planck
length. As the illustration shows, the resulting wavelength corresponds with reduced quanti-
ties of mass, momentum, time, and energy from their maximum potentials. Meanwhile, the
photon’s velocity remains at a constant rate of c.

3.4 Energy

The third component of the particle mechanics function is another instance of Planck length
to Planck time. Multiplying this final component to the Planck momentum yields the maxi-
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Fig. 5: Photon properties are determined using the wavelength proportionality operator. An increase in wave-
length is proportional to decreases in mass, momentum, and energy

mum energy potential

EP = pP
lP

tP
.

This second factor of lP/tP adds the dynamic property of motion. In Planck units, it
represents the maximum rate of displacement in a particle’s position with respect to time.
Energy combines the change in wavelength, described by momentum, with its rate of dis-
placement. The resulting energy is a dynamic redistribution of the particle over space and
time.

From the definition of Planck energy we get an equality between Planck momentum and
Planck energy in the form

lP pP = EPtP. (16)

Figure 6 illustrates the relationship between momentum and energy in equation 16. As
the figure shows, the Planck ratios of energy to momentum and length to time are equal to
c. The figure also shows the equivalent relationships between the product of Planck energy
and time, and the product of Planck momentum and length. Each of these quantities is equal
to Planck’s constant, 1.05 × 10−34kgm2/s.

Equation 16 expresses two important physical concepts. Each side of 16 represents a
form of action in dimensions of momentum-length and energy-time, both in units of kgm2/s.
To get the second concept, we can re-arrange 16 as

pP

tP
=

EP

lP
(17)

to produce two equivalent forms of force in dimensions of momentum per time and energy
per length, both in units of kgm/s2.

Equation 16 can be modified to quantify momentum and energy at different scales. Ap-
plying proportionality operators to the maximum Planck energy potential produces

∆xp = ∆tEk (18)

where ∆x represents the rate of change in an oscillating particle’s position and ∆t represents
the corresponding time. Selecting the particle’s wavelength o as the change in position gives
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Fig. 6: The momentum-energy relationship repeats the mass-momentum relationship in the ratio of Planck
length to time. The ratios between Planck units in the illustration define the physical dynamics of action and
force.

the oscillation period T as the change in time. Restating the equation in terms of oscillation
period gives

op = TEk. (19)

Just as om and pTλ are conserved quantities in the quantum constant, op and T Ek are
conserved quantities in the amount of Planck’s constant. Equality 19 is proposed as a second,
fundamental symmetry of nature that conserves momentum and energy.

3.4.1 Rest Mass

Determining the properties of photons is simple in that a single proportionality operator
transforms the maximum momentum and energy potentials into measured values of a given
photon. Particles that have rest mass are more complex due to their interaction with the
Higgs field. This interaction produces a quantity of latent rest mass in addition to the inertial
mass linked with the particle’s wavelength.

To account for the Higgs interaction, three additional operators are needed.

Rest Mass Operator
The interaction between a massive particle and the Higgs field reduces the maximum

mechanical energy potential from the Planck scale down to the scale of the particle’s Comp-
ton wavelength. As a result, we can treat the Compton wavelength as analogous to the Planck
length—the particle’s maximum wavelength potential, or shortest wavelength. The rest mass
operator also reduces the maximum potential for generating inertial mass. The quantity of
mass associated with the particle’s Compton wavelength is equal to the particle’s rest mass
because the Compton and de Broglie formulas converge at the speed of light.

For particles that acquire rest mass, the model adds a rest mass operator, βm, in the ratio
of the Planck length to the particle’s Compton wavelength; or equivalently, in the ratio of its

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2020                   doi:10.20944/preprints202006.0017.v1

https://doi.org/10.20944/preprints202006.0017.v1


18

rest mass to the Planck mass. The rest mass operator only breaks the symmetry proposed in
10 with respect to the particle’s total mass and energy, and does not affect its inertial mass
and kinetic energy.

Table 5 shows two equivalent forms of the rest mass operator, lP/oC and m0/mP, for
each of the charged leptons.

Table 5: Two equivalent forms of the rest mass operator produce expected intervals in the charged leptons’
Compton wavelengths and rest masses, demonstrating the equivalence in proportions of length and mass to
their maximum potentials.

Lepton lP/o, m0/mP oC (m) Length ratio m0 (kg) Mass ratio

e 4.1855 × 10−23 3.8616 × 10−13 - 9.1094 × 10−31 -
µ 8.6542 × 10−21 1.8676 × 10−15 206.77 1.8835 × 10−28 206.77
τ 1.4554 × 10−19 1.1105 × 10−16 16.817 3.1675 × 10−27 16.817

The rest mass operator βm applied to the Planck length and Planck mass yields known
values of the leptons’ Compton wavelengths and rest masses. In addition, the table shows
that intervals of wavelength and mass between generations of leptons are preserved when the
operator is applied. For each interval between particles, the change in wavelength matches
a change in rest mass.

Velocity Operator
The Higgs field interaction reduces the rate of change in a particle’s position with respect

to time. For charged leptons, the model adds a velocity operator, βv, representing the rate
of displacement to time. The rest mass operator changes the scale on which the velocity
operator acts—instead of reaching a maximum velocity at the Planck scale, as photons do,
the maximum velocity is reached at the Compton scale.

The wavelength operator we applied to photons also applies to particles with rest mass;
however, the maximum wavelength potential is also changed from the Planck length to the
Compton wavelength. The wavelength and velocity operators are equivalent and become
normalized in dimensions of distance per time so that a measurement of a particle’s velocity
also tells us the change in its wavelength. These two operators create a combined reduction
β2, or v2/c2.

The equivalence of these two operators confuses the meaning of momentum when ap-
plied to massive particles. To be consistent, the formula p = mv must represent a particle’s
strength due to its wavelength and not due to its velocity. To treat a massive particle’s mo-
mentum as a function of velocity is incompatible with massless particle momentum where
velocity is always a constant rate of c. In the case of photons, a change in momentum is a
change in wavelength that increases or decreases the particle’s strength proportionally. This
definition of momentum can be applied consistently to both bosons and fermions according
to 15. For massive and massless particles, momentum is analogous to a payload quantified
by the concentration of wavelength, whereas velocity delivers the payload.

The use of momentum pre-dates the emergence of quantum theory when wave-like at-
tributes of matter first became known. For Newton and others who described momentum
prior to the 20th century, the quantity v2 simply matched the observational data. Louis de
Broglie’s introduction of the quantum mechanical formula for momentum clarifies the sep-
arate roles of wavelength and velocity in determining quantities of momentum and energy.
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Taken together, the wavelength and velocity operators constitute a 2-part mechanism
governing the kinetics of elementary particles. The two operators act together, modifying
a particle’s wavelength at the same time changing its velocity. Because the operators are
equal in magnitude, they produce a squared quantity of kinetic energy relative to either the
particle’s wavelength or its velocity. Treating these operators as reductions from a maximum
potential, we can characterize longer wavelengths and slower velocities as larger dilutions
of a conserved quantum constant over space and time. This 2-part mechanism gives a beau-
tifully simple explanation of kinetic energy for massless and massive particles, universally
determined by the strengths of wavelength and velocity.

It is now evident how the conversion of inertial mass into units of kgm/s requires the
introduction of Tλ into the function. The combined change in wavelength and velocity means
that we can calculate the particle’s temporal period as

T = Tλ
o

oC
= Tλ

c
v

=
o

v
.

Spin Operator
The three operators for rest mass, wavelength, and velocity explain the basic mechanical

properties of massive particles except for a one-half reduction in kinetic energy. The New
Foundations Model offers a physical explanation for this reduction as a particle’s intrinsic
spin, where two half-spin rotations complete an oscillation cycle. According to the proposed
model, a 1/2 reduction in kinetic energy is explained as the dilution of energy across an
extended cycle. The model presumes that energy is diluted by intrinsic spin and must still
be applied to composite particles with aggregated spin attributes.

The addition of a spin operator creates a variation of equation 19 for half-spin particles,
giving

op = 2T Ek. (20)

Figure 7 illustrates the relationship between mass, momentum, and energy in terms of
the proposed proportionality operators. For particles with rest mass, the maximum potential
previously defined as the Planck scale is replaced by the Compton scale. The red diamond
represents the reduced maximum potentials determined by applying the rest mass operator to
units of Planck length, mass, and time. Reductions in the equivalent wavelength and velocity
operators further reduce the particle’s momentum and energy, shown in the upper and lower
diamonds as dilutions from the maximum momentum and energy potentials. These two
operators increase the particle’s wavelength and reduce its velocity equally.

The diagram doesn’t show the fourth reduction which reduces the kinetic energy in half
due to an extended cycle over two half-spin rotations.

3.5 Putting it All Together

Equation 20 can now be stated in the following form representing physical quantities of
length, mass, and time

KE =
1
2

m
o

Tλ

o

T
. (21)

The following sections demonstrate the New Foundations Model using known particle
properties. While the model reproduces the same quantities as traditional formulas, it ex-
plains the mechanics in more physically meaningful terms. In addition, the demonstrations
showcase the consistency with which the symmetries, maximum potentials, and operators
describe physical laws.
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Fig. 7: Charged leptons are reduced from their maximum mass, momentum, and energy potentials by four
operators: the rest mass operator, wavelength operator, velocity operator, and spin operator (not shown in the
diagram).

3.5.1 Summary of Symmetries

Table 6 summarizes the two proposed symmetries. Two equalities express the conservation
of mass, momentum, and energy, and define the mechanical properties of action and force.

Table 6: A summary of symmetries accounting for the conservation of mass, momentum, and energy.

Symmetry Current Max potential Invariant Conserved quantity

om = pTλ lPmP om 3.52 × 10−43 kgm
pPtP pTλ 3.52 × 10−43 kgm

o/Tλ c

op = T Ek lP pP op 1.05 × 10−34 kgm2/s
tPEP T Ek 1.05 × 10−34 kgm2/s

∆x/∆t c

The first symmetry is equation 15, the relationship between mass and momentum. Ac-
cording to the equality, the product of wavelength and mass is equal to the product of mo-
mentum and time. Each side of the equality conserves the quantity 3.52 × 10−43kgm. This
symmetry remains unbroken with respect to the kinetic energy of massless and massive par-
ticles but is broken by the generation of rest mass separating the kinetic and latent energies
of massive particles.

The quantity 3.52×10−43kgm is the proposed quantum constant which is invariant for the
product of mass and wavelength. Reductions from the maximum Planck potentials increase
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the spatial and temporal distribution of the quantum constant, diluting its strength in physical
interactions.

The second symmetry is equation 19, the relationship between momentum and energy.
According to the equality, the product of a change in position and momentum is equal to
the product of a change in time and kinetic energy. Each side of the equality conserves the
quantity 1.05 × 10−34kgm2/s, Planck’s constant. This symmetry is modified for fermions
which undergo a reduction in spin resulting in equation 20.

3.5.2 Summary of Operators

Table 7 summarizes the operators of the particle mechanics function.

Table 7: A summary of the mechanical operators: the rest mass, wavelength, velocity, and spin operators.

Operator Name Symbol Photon Charged Leptons

Rest Mass Operator βm -
lP
oC

,
m0

mP

Wavelength Operator βλ
lP
o

oC

o
,

m
m0

, α

Velocity Operator βv 1
otP
TlP

,
v
c

Spin Operator s 1
1
2

α = fine structure constant; lP = Planck length; oC = reduced Compton wavelength; o = particle wave-
length; mP = Planck mass; m0 = rest mass

According to the New Foundations Model, the four operators in table 7 quantify me-
chanical properties of elementary particles as reductions from maximum Planck potentials.
Only the wavelength operator affects photons, reducing their quantities of mass, momen-
tum, and energy in proportion to the maximum Planck potentials. Photon energy is entirely
kinetic and carries no latent energy.

Particles with rest mass add the rest mass, spin, and velocity operators to account for
the Higgs interactions. The rest mass operator separates a particle’s inertial and latent mass,
where inertial mass determines kinetic energy and both forms of mass contribute to the
particle’s total mechanical energy. The velocity operator is equal to the wavelength operator,
and the combination of these two operators creates a squared quantity of kinetic energy. The
spin operator reduces the particle’s kinetic energy in half.

It is important to note that I’ve defined the wavelength operator differently for particles
that have rest mass from those that do not. For particles with rest mass, wavelength as a
physical attribute is represented by the Planck length divided by the product of rest mass
and wavelength operators. For particles with no rest mass, the physical attribute is calculated
simply as the Planck length divided by the wavelength operator. This convention is used
to incorporate rest mass and to highlight the relationship between particle wavelength and
velocity.
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3.5.3 Heisenberg Uncertainty Principle

The New Foundations Model treats the symmetries in table 6 as ontic descriptions of physi-
cal laws. In describing the fluid dynamics of elementary particles, unimpeded by localizing
interactions, the symmetries are given as equalities.

Introducing an act of localization invokes the measurement problem, and the equalities
in table 6 become inequalities defining the transitional boundaries between a distributed
particle state and a localized measurement of some physical property.

Two common forms of the uncertainty principle

∆x∆p ≥
~

2

and

∆t∆E ≥
~

2
can be restated as

∆x∆p ≥
lPPP

2
and

∆t∆E ≥
tPEP

2
.

The equations can also be written using the conserved, reduced values of Planck’s con-
stant op, and T E, according to 18 and 19.

The limitations imposed by the inequalities can also be written in terms of proportion-
alities. Assuming positive rates of change, the inequalities can be arranged as

∆p
pP
≥

lP

∆x

and
∆E
EP
≥

tP

∆t

3.5.4 Demonstrating the Model with Electrons

The New Foundations Model can be demonstrated using electron properties. Table 8 applies
the four operators to an electron in stages.

The table begins with the maximum Planck potentials included in the particle mechanics
function. The top row includes values of Planck length, mass, time, momentum, and energy.
The unbroken symmetries from table 6 are also shown.

The second section applies the rest mass operator βm which reduces the electron’s max-
imum kinetic potentials from the Planck scale down to the Compton scale.

The third section further reduces the kinetic energy potential by applying the spin oper-
ator, reducing the electron’s kinetic energy in half.

The final section applies the wavelength and velocity operators. Each row represents a
different value of the two equivalent operators on a scale of 0 to 1, where 1 is the maxi-
mum potential in wavelength (the shortest wavelength) and velocity (the greatest velocity).
Demonstrated values of the operator include α, the fine structure constant, which produces
the ground state properties of an electron in the hydrogen atom.
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Table 8: The proposed operators are applied to an electron in steps. From the maximum Planck potentials,
reductions are applied for the rest mass operator, the spin operator, and the wavelength and velocity operators.

Max lP (m) mP (kg) tP (s) pP (kgm/s) EP (kgm2/s2) om, pTλ ∆xp, ∆tEk o/Tλ ∆x/∆t

1 1.62 × 10−35 2.18 × 10−8 5.39 × 10−44 6.52 1.96 × 109 lPmP ~ c c

βm oC m0 Tλ p KE om, pTλ ∆xp, ∆tEk o/Tλ ∆x/∆t

4.19 × 10−23 3.86 × 10−13 9.11 × 10−31 1.29 × 10−21 2.73 × 10−22 8.19 × 10−14 lPmP ~ c c

s oC m0 Tλ p KE om, pTλ ∆xp, ∆tEk o/Tλ ∆x/∆t

1/2 3.86 × 10−13 9.11 × 10−31 1.29 × 10−21 2.73 × 10−22 4.09 × 10−14 lPmP ~ c c

βλ, βv o m Tλ p KE om, pTλ ∆xp, ∆tEk o/Tλ ∆x/∆t

1.0 3.86 × 10−13 9.11 × 10−31 1.29 × 10−21 2.73 × 10−22 4.09 × 10−14 lPmP ~ c c
0.9 4.29 × 10−13 8.20 × 10−31 1.43 × 10−21 2.46 × 10−22 3.32 × 10−14 lPmP ~ v v
0.5 7.72 × 10−13 4.55 × 10−31 2.58 × 10−21 1.37 × 10−22 1.02 × 10−14 lPmP ~ v v
α (0.0073) 5.29 × 10−11 6.65 × 10−33 1.77 × 10−19 1.99 × 10−24 2.18 × 10−18 lPmP ~ v v

Fig. 8: The basic mechanics of massive particles are illustrated in the relationships between length, mass, and
time. The figure applies the rest mass, wavelength, and velocity operators to the maximum Planck potentials.
The spin operator is not shown in the figure.

For every value of the wavelength and velocity operators, the quantum constant and
Planck’s constant are conserved through the spatial and temporal currents v2.

Figure 8 is a conceptual illustration of the massive particle mechanics described by the
New Foundations Model. As shown in the illustration, the βm operator determines the parti-
cle’s Compton wavelength, which has a dual meaning. It is both the measure of a particle’s
rest mass in terms of a photon’s wavelength, and also the limit of the particle’s own wave-
length as it approaches the speed of light. The spin operator for particles with rest mass is
not shown in the illustration, but reduces the maximum kinetic energy potential by half.

It may seem that rest mass should increase a particle’s kinetic energy but that does not
appear to be the case. A comparison of the kinetic energy equations for photons and electrons

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2020                   doi:10.20944/preprints202006.0017.v1

https://doi.org/10.20944/preprints202006.0017.v1


24

shows that kinetic energy in both cases is determined by a particle’s wavelength regardless
of the presence of rest mass. It is as if the particle’s rest energy is just sufficient to overcome
Higgs field resistance, after which the same rules of inertial mechanics apply to bosons and
fermions.

Given the application of rest mass, the illustration shows that a particle’s wavelength is
further refined by the βλ operator, and its velocity is determined by the equivalent βv oper-
ator. The maximum potential of these operators is shown as c at the Compton wavelength.
The operators approach zero as wavelength increases.

The illustration also shows how different quantities of length, mass, and time relate to
each other. For a given wavelength there is a corresponding quantity of mass and time, where
rest mass is also present but does not affect the kinetic energy. The time unit Tλ gives the
particle’s wavelength in units of seconds, normalizing the wavelength and velocity operators
as v2/c2. The second time component is the particle’s oscillation period T , which increases
with the combined effects of longer wavelength and slower rate of displacement.

3.6 Demonstration on the Bohr Hydrogen Atom

The New Foundations Model can be demonstrated on the Bohr hydrogen atom. The elec-
tron’s properties described by several constants in table 2 are reinterpreted here in terms of
maximum potentials and reduction operators.

3.6.1 Rydberg Energy

The kinetic energy of a ground state electron is given by the Rydberg energy formula. The
Rydberg energy is determined using the Rydberg constant from table 2

1
4π

(
me

mp

)
α2

lp

where mP is the Planck mass. The Rydberg constant is a collection of operators described in
table 7 that transform the Planck energy into the ground state energy of the electron. In the
Rydberg constant we find the βm operator in the ratio me/mP, the wavelength and velocity
operators in the form of α2, and a half spin operator. An additional value of 2π and the
Planck length appear in the denominator.

To determine the ground state energy of the electron, the Rydberg constant is multiplied
by hc which we can write in Planck units as

hc = 2πlPEP.

Multiplying the Rydberg constant by hc gives

1
2��2π

(
me

mp

)
α2

��lp
��2πEP�lP.

The formula shows that a superfluous value of lP is included in both the Rydberg con-
stant and hc. Unnecessary quantities are easy to identify and remove when we use the ele-
mentary forms of the constants. The unnecessary Planck lengths cancel as does the angular
constant 2π in the numerator and denominator. The remaining formula

1
2

(
me

mp

)
α2EP (22)
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may be considered the operator form of the kinetic energy formula E = 1/2mv2, where
extensive values of mass and velocity are replaced by proportionality operators acting on
the maximum Planck energy potential. We can summarize the operators as

• Rest mass operator: βm (me/mP), 4.185 × 10−23

• Spin operator: 1/2
• Wavelength operator: βλ (α), 0.0073
• Velocity operator: βv (α), 0.0073

Applying the operators to the Planck energy shows how the ground state energy is pro-
duced

EP = 1.2209 × 1019 GeV

×4.185 × 10−23 = 510, 999 eV

×1/2 = 255, 500 eV

×0.00732 = 13.6 eV

3.6.2 Bohr Radius

Bohr proposed calculating the allowed electron orbitals using the electrostatic force [17]

rn =
n2~2

Zkee2me

where n is the orbital number and Z is the integer number of protons in the nucleus. We
can simplify Bohr’s formula by substituting Planck units for ~, Ke, and e according to the
formulas in table 2

rn =

(
n2

Z

)  ��l3PlP��mPmP

��t
2
P

  ��t
4
P

��l
3
P��mP

  1

��t
2
Pα

 1
me

which yields

rn =

(
n2

Z

) (
mP

me

) (
1
α

)
lP.

Multiplying the inverse rest mass operator mP/me and the inverse wavelength operator
1/α by the Planck length gives the electron’s wavelength, simplifying the formula to

rn =

(
n2

Z

)
o (23)

where o is equal to 5.29 × 10−11m. The remaining ratio n2/Z accounts for the intervals
of different atomic numbers and orbitals. For the ground state of the hydrogen atom, the
formula shows that the Bohr radius is equal to the electron’s wavelength.

We can show that the de Broglie formula produces the same result as the electrostatic
formula by inserting the rest mass and wavelength operators into 6

o =

(
mP

m0

) (c
v

)
lp .

The velocity operator c/v is equal to the wavelength operator so we can also write the
equation as

o =

(
mP

me

) (
1
α

)
lp .
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3.6.3 Electron ground state velocity

Bohr compared the centripetal force of the electron to the electrostatic force [17], giving the
equivalence

mev2

r
=

kee2

r2

which can be arranged into a formula for the electron’s velocity

v2 =
kee2

mer
.

The formula can be written in natural units where the constants ke and e2 are replaced
by the formulas in table 2. We can also substitute o for r in the ground state where the radius
and wavelength are equal according to 23

v2 =
lPmPc2

��t
2
P

��t
2
Pα

ome

=

(
lP

o

) (
mP

me

)
αc2.

To reduce the formula further, we can replace lP/o, which includes the βm and βλ opera-
tors, with two equivalent forms. Substituting me/mP for the rest mass operator and α for the
wavelength operator gives

v2 =

(
me

mP

) (
mP

me

)
α2c2.

We now have offsetting rest mass operators that cancel, leaving just the wavelength and
velocity operators acting on the maximum velocity c

v =
√
α2c2

=αc.

3.7 Total Mechanical Energy

The total mechanical energy of a particle is found by combining its kinetic energy of motion
with its latent rest energy. The energy-momentum formula blends these two vectors. The
significance of the total energy can be evaluated in terms of the particle’s rest and inertial
masses. The standard form of the energy-momentum formula

E =

√
(pc)2 + (m0c2)2

can be restated in terms of mass as

E =

√
m2 + m2

0 c2 (24)

where m is the inertial mass and m0 is the rest mass.
In this form we can evaluate the two mass vectors while treating c2 as a unit conversion.

The result of the formula is to blend a fixed quantity of rest mass with a variable quantity of
inertial mass.
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It is worth considering whether dimensions of MLT−1 are the best choice for quan-
tifying momentum, given that these units were chosen without a knowledge of matter’s
wave-like properties. We could simplify mechanical equations using inertial mass, apply-
ing a dimensionless wavelength operator oC/o to the rest mass. This would use the inverse
mass-wavelength relationship to quantify the effects of inertia in units of kilograms. Multi-
plying by velocity introduces motion into the formula in dimensions of length per time, and
Energy would be quantified in kgm/s. This approach removes the confusing use of time to
quantify the particle’s wavelength.

We could go even further in treating mass and energy as equivalent. Replacing the ex-
tensive value of velocity with its operator form, v/c, we could quantify energy in units of kg.
Quantities of mass, momentum, and energy would all be calculated using only the Planck
mass and dimensionless operators on a scale of 0 to 1. This would give the following three,
simple equations for calculating energy. The first formula applies to particles without rest
mass, the second formula gives the kinetic energy of particles with rest mass, and the third
formula gives the total energy of particles with rest mass—each quantified in kg

Eγ =mP

(
lP

o

)

KE =mP

(
lP

o

) (v
c

) (1
2

)

E =mP

(
lP

o

) √
1 +

(
o

oC

)2

.

I’m not advocating a change in unit system so much as I’m casting light on the physical
meanings of mass and momentum, and their use in formulas to describe particle mechanics.

From this simplified form of the total energy equation we can create an operator specif-
ically for calculating a particle’s total energy

βE =

√
1 +

(
o

oC

)2

where total energy is calculated as βm βλ βE EP

An interesting question is whether the full Planck energy potential EP is conserved
somehow by each particle. In the case of a photon, the proportionality operator is such
that for any length photon, the Planck energy can be evenly distributed in intervals of the
Planck length across its wavelength. One implication might be that the reduced quantity of
energy encountered in a photon interaction is actually present at each interval of the pho-
ton’s length, but only interacts at one location. Determining where the photon will interact
can only be answered by resolving the measurement problem.

The same question could be asked about particles with rest mass, where rest mass can be
evenly distributed across the Compton wavelength and further diluted by the wavelength and
velocity operators according to its velocity. We can imagine a fixed quantity of energy being
conserved across space and time as the driving force behind particle mechanics. From slowly
moving particles with long wavelengths to high speed particles with shorter wavelengths—
and everything in between—the Planck energy may be conserved by the proposed operators
while lending different quantities of energy to interactions between particles.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 June 2020                   doi:10.20944/preprints202006.0017.v1

https://doi.org/10.20944/preprints202006.0017.v1


28

3.7.1 Demonstrating the model in natural units

Table 9 demonstrates the proposed operators and equations using two scenarios. The first
scenario treats the Planck units as natural units of length, mass, and time, where units of
length are integer multiples of the Planck length. The example demonstrates in simple ra-
tios the physical transformations made by each operator and equation. The second example
calculates the same properties for a ground state electron in the hydrogen atom.

Table 9: The New Foundations Model is summarized in two examples: one example in natural units, and
another example of the ground state electron.

Name Symbol Operator form Formula e.g. natural units e.g. H1 1s electron

Planck length lP - - 1 1.616255 × 10−35m

Planck mass mP - - 1 2.176434 × 10−8kg

Planck time tP - - 1 5.391247 × 10−44 s

Rest mass operator βm -
m0

mP
,

lP
oC

1/10 4.185463 × 10−23

Wavelength operator βλ -
oC

o
,

m
m0

10/25 0.007297353

Velocity operator βv -
otP
TlP

,
v
c

10/25 0.007297353

Spin operator s -
1
2

1/2 0.5

Total energy operator βE -

√
1 +

(
o

oC

)2 √
(1 + (25/10)2 137.0396

Compton wavelength oC
lP
βm

lPmP

m0
10 3.861593 × 10−13m

Wavelength o
lP

βm βλ

lPmP

m
25 5.291772 × 10−11m

Rest mass m0 mP βm
lPmP

oC
1/10 9.109384 × 10−31kg

Inertial mass m mP βm βλ
lPmP

o
1/25 6.647438 × 10−33kg

T Lambda Tλ
tP

βm βλ

o

c
25 1.765145 × 10−19 s

Momentum p pP βm βλ
m0oC

Tλ
,
mo
Tλ

1/25 1.992852 × 10−24kgm/s

Velocity v
lP
tP
βv

o

T
,
∆x
∆t

25/62.5 2, 187, 691m/s

Period T
tP
βλ

βv
Tλo
oC

252/10 2.418884 × 10−17 s

Kinetic Energy KE βm βλ βv s EP
mo2

2TλT
(1/25)(252)

(2)(25)(62.5)
2.179872 × 10−18 J

Total Energy E βm βλ βE EP

√
m2 + m2

0c2
√

(1/25)2 + (1/10)2 12 8.187324 × 10−14 J

The simplicity of elementary particle mechanics—under isolated conditions—can be
demonstrated with the mechanical operators. We can create a consolidated operator β as the
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product of the four kinetic energy operators

β =
1
2

(
lP

oC

) (
oC

o

) (
o

T
tP

lP

)
that reduces to a new time operator multiplied by the spin operator

βt βs =
tP

2T
.

This single, dimensionless operation applied to the Planck energy gives the particle’s
kinetic energy

KE = βt βs EP

while removing the spin operator gives the correct value of photon energy.
The simplicity of this formula reflects the power of natural symmetries in constraining

the possible quantities of a particle’s mechanical properties. Given nothing more than its
temporal period, we can determine the particle’s wavelength, mass, momentum, and energy.
The symmetries in table 6 and the maximum Planck potentials make this possible. The same
result can be calculated using the traditional formula ~/2T , but deriving the formula from the
operators gives a physical description of the transformations that we don’t get from Planck’s
constant. The time operator depicts a maximum Planck energy diluted over the particle’s
oscillation period.

We can summarize the time operator as the product of mass, wavelength, and velocity
operators

βt = βm βλ βv.

3.7.2 Action

The principle of action uses the constraints imposed by fundamental symmetries to predict
particle trajectories. We can derive the formulas for action by multiplying the combined
dimensionless operator presented in the previous section by the Planck energy. Expanding
the formula gives

KE =
1
2

(
lP

��oC

) (
��oC

�o

) (
�o

T
�tP

�lP

)
mP

(
lP

tP

) (
�lP

�tP

)
which reduces to the following equality, presented earlier as equation 20 where lPPP can be
any combination of op

T Ek =
lP pP

2
.

T is the oscillation period and KE is the kinetic energy. Additional equations of action can
be created using combinations of terms conserving ~, including lP pP, EPtP, op, and T E.

4 Gravity

An important pursuit in modern day physics is a theory that unites quantum mechanics with
general relativity. The new form of the gravitational constant in 2 along with the principles of
maximum potential and proportionality may offer clues for uniting the theories. The grav-
itational constant shows that maximum gravitational potentials are quantified in the same
units used by particle mechanics, and proportionality operators are also constructed from
the ratios of length, mass, and time.
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The gravitational function is expressed in three parts

G =

(
lP

mP

) (
lP
tP

) (
lP
tP

)
. (25)

The first component is the ratio of Planck length to Planck mass, giving an inverse lin-
ear mass density in units of m/kg. The quotient of these two Planck units produces the
principal maximum potential for gravitational bodies, equal to 7.43 × 10−28m/kg. The sig-
nificance of this ratio is seen in the attributes of black holes where the relationship between
the Schwarzschild radius and the mass is always 7.43× 10−28m/kg, according to equation 7.
A limit on black hole linear density may suggest that black holes are not singularities, and
that matter engulfed by a black hole cannot be compressed beyond this limit.

The properties of existing and theoretical gravitational bodies are given in table 10,
where the properties of theoretical bodies are determined from the equations.

Table 10: Attributes of existing and theoretical gravitational bodies are shown, including black holes and
other less dense bodies

Body Mass (kg) Radius (m) Mass density (m/kg) Velocity (m/s) Accel (m/s2)

Planck mass bh 2.1764 × 10−8 3.2325 × 10−35 7.4262 × 10−28 299, 792, 458 1.3920 × 1051

Sagittarius A* 8.2582 × 1036 1.2265 × 1010 7.4262 × 10−28 299, 792, 458 3.6638 × 106

Black hole Sun 1.9885 × 1030 2.9533 × 103 7.4262 × 10−28 299, 792, 458 1.5216 × 1013

Sun 1.9885 × 1030 6.9570 × 108 1.7493 × 10−22 617, 684 274.21
Black hole Earth 5.9723 × 1024 8.8703 × 10−3 7.4262 × 10−28 299, 792, 458 5.0661 × 1018

Earth 5.9723 × 1024 6.3781 × 106 5.3398 × 10−19 11, 180 9.7985

The signature characteristics of gravitation equations are inputs of mass in the numerator
and length in the denominator. The gravitational function uses these inputs as proportionality
operators against the maximum linear mass density lP/mP. The combination of these two
inputs with the maximum potential in the function gives the principal operator βρ, signifying
the intensive relationship between a body’s radius and its mass

βρ =

(
lP

l

) (
M
mP

)
where l is the radius of the gravitational body and M is its mass. Figure 9 illustrates the
relationship between length and mass as it pertains to gravitational bodies. The maximum
density 7.43 × 10−28 is plotted at 45 degrees from the origin, signifying a 1:1 relationship
between length and mass in natural units. According to the Schwarzschild radius formula,
all black holes have the same linear mass density as this determines the horizon of the black
hole by its mass. Black holes are only separated along this line by extensive quantities of
their masses and radii.

No gravitational bodies appear above the line as the limit on linear mass density appears
to forbid it. Bodies with less than the maximum density fall below the line according to their
densities.

The linear mass density operator works at arbitrary distances from the center of a body
including its horizon and locations above. The role of linear mass density in determining
gravitational potential can be shown in the formula for velocity potential.
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Fig. 9: The maximum linear mass density of black holes is the constant lP/mP

4.1 Velocity

The traditional formula for escape velocity at a distance r from the center of a gravitational
body

v2
e =

2GM
r

can be re-stated as

v2
e = 2

(
lP

mP
c2

)
M
r
.

Re-arranging the terms demonstrates the βρ operator which acts on two instances of c

ve =

√
2
(

M
mP

) (
lP

r

)
c2.

The simplified formula for escape velocity is

ve =

√
2βρ c.

The formula shows that selecting the Schwarzschild radius as the distance r produces an
escape velocity of c at the horizon.

The second and third components of the gravitational function are two instances of c,
the maximum velocity potential. If we add an input for the mass of a body at a distance r,
we get a formula for energy in units of kgm2/s2.

4.2 Energy

The formula for gravitational potential energy

Ug = −G
Mm

r
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can be restated in Planck units as

Ug = −

(
lP

r

) (
M
mP

)
mc2.

The mass of the second body can also be represented as mmP/mP, allowing us to state
the equation in terms of energy potential as

Ug = −

(
lP

r

) (
M
mP

) (
m
mP

)
EP

or simply
Ug = −βρ βm EP.

According to the energy and velocity equations, the βρ operator is the right reduction for
the gravitational field to transform two values of c into the wavelength and velocity operators
described by the New Foundations Model. The mass m is already entered in reduced form
so the βρ operator is applied entirely to c2.

It is worth calling out this correspondence between mechanical and gravitational func-
tions. The gravitational function determines the strength of gravitational potentials in the
same terms we use to describe the mechanical properties of elementary particles. The pro-
portionality operator βρ produces a field strength equal to the mechanical strength of a
particle determined by its wavelength and velocity operators. The conservation of mass-
wavelength proposed in 3.2 makes this possible.

Revisiting the formula for escape velocity, we see that taking the square root of the linear
mass density operator gives the value for each of the wavelength and velocity operators.
Individual proportions of length and mass do not need to be the same as long as we take the
square root of the product of length and mass.

The application of the βρ operator on c2 tells us something important about the natural
intervals and ratios of length, mass, and time. We saw with particle mechanics that applying
a length operator to the maximum mass potential gives the correct quantity of mass. Now
we also see from the linear mass density operator that we can apply a ratio of length/mass
onto maximum units of length/time and get the correct velocity.

To produce values of acceleration and force, the gravitational function requires an addi-
tional operator in the ratio of Planck length to distance r. We can call this operator βl for the
reduction in length potential.

4.3 Acceleration

The traditional formula for gravitational acceleration potential

g = −
GM
r2

can be re-written as

g = −

(
lP

mP
c2

)
M
r2 .

Arranging the equation into operators and maximum potentials gives

g = −

(
M
mP

) (
lP

r

) (
lP

r

)  lP

t2
P

 .
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The formula shows that the acceleration is given by the usual linear mass density oper-
ator combined with the dimensionless length operator in the ratio of lP/l. What remains is
the maximum acceleration potential in units of m/s2

= −βρ βl aP

where aP is the maximum acceleration potential.

4.4 Force

The traditional formula for gravitational force potential

F = −G
Mm
r2

can be expressed by the gravitational function as

F = −

(
M
mP

) (
lP

r

) (
lP

r

)
maP.

The mass of the second body can also be represented as mmP/mP, allowing us to state
the equation in terms of force potential as

F = −

(
M
mP

) (
lP

r

) (
lP

r

) (
m
mP

)
FP

which simplifies to the following set of operators

F = −(βρ βl βm) FP.

Because the mass is entered in reduced form, the two operators are only applied to the
maximum acceleration potential. The product of mass and acceleration gives the force.

Even the complex Einstein Field Equations describe force in terms of maximum poten-
tials. The right-hand side of the Einstein Field Equations

8πG
c4 Tuv

can be restated as a maximum force potential

8π
(

tP

pP

)
Tuv (26)

where tP/pP is the inverse Planck force—a quantity that appears in many of the constants
in table 2. In this case the stress energy tensor acts as an operator on the maximum force
potential to characterize the mass-energy content of spacetime.

Table 11 summaries the gravitational functions and operators.
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Table 11: A summary of operators used by the gravitational function. The function calculates physical quan-
tities by applying proportionality operators to maximum potentials embedded in the function.

Property Operators Simple Function Traditional function

Velocity βρ v = −
√

2βρ c ve = −

√
2GM

r

Energy βρ, βm E = −βρ βm EP Ug = −
GMm

r

Acceleration βρ, βl a = −βρ βl aP g = −
GM
r2

Force βρ, βl, βm f = −βρ βl βm FP F = −
GMm

r2

5 Electromagnetism

The New Foundations Model explains electromagnetic potential using the same principles
that describe particle mechanics and gravitational potential. The electromagnetic constants
are also maximum potentials comprising the Planck length, mass, and time; and proportion-
ality operators determine the electromagnetic field potentials. These similarities are hidden
by the unique unit types quantifying the electromagnetic interaction. With the conversion of
electromagnetic constants into Planck units in table 2, the electromagnetic interaction can
now be interpreted entirely in units of length, mass, and time. Table 12 gives a conversion
for each electromagnetic unit into MKS units.

Table 12: Electromagnetic units have equivalent values in kilograms, meters, and seconds. The table pro-
vides a conversion factor for each unit type derived from the Planck unit definitions of the electromagnetic
constants.

Em Unit Symbol Formula Conversion MKS units

coulomb q, e qP/qP 2.874495 × 10−26 s
ampere A IP/IP 2.874495 × 10−26 dimensionless

volt V VP/VP 3.478872 × 1025 kgm2/s3

tesla T BP/BP 3.478872 × 1025 kg/s2

weber Wb V s 3.478871 × 1025 kgm2/s2

ohm Ω ZP/ZP 1.210255 × 1051 kgm2/s3

henry H LP/LP 1.210255 × 1051 kgm2/s2

farad F CP/CP 8.262723 × 10−52 s4/kgm2

siemen S GP/GP 8.262720 × 10−52 s3/kgm2

Conversion factors were calculated as the ratio of the MKS value to the traditional value,
using the constants noted in the table.

The principal function of the electromagnetic interaction is Coulomb’s law, given by
the Coulomb constant and the inverse electric permittivity. Like the gravitational constant,
Coulomb’s constant is comprised of fundamental Planck units. The constant includes eight
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units, simplified below into six where Planck momentum replaces lPmP/tP

f orce =

(
pP

tP

) (
lP
tP

) (
lP
tP

)
.

Coulomb’s law gives the forces of attraction and repulsion due to the electromagnetic
interaction. The function converts inputs of charge and distance into units of force, where
the maximum force potential pP/tP is embedded inside the function. To measure the force
between two locations, the function requires two operators for each location. The first op-
erator is the ratio of charge to Planck time, where charge is a rate of change quantified in
seconds. While charge is traditionally quantified in units of coulomb, the model shows that
electric charge is naturally quantified in units of time.

The second operator is the ratio of Planck length to the distance between locations, given
in meters. The four total inputs—two from each location—have dimensions of s2/m2, which
pair up with the embedded value of c2 to create dimensionless operators. The operators act
on the maximum Planck force potential also embedded in the constant.

The inverse square relation found in the strengths of gravitational and electromagnetic
potentials reflect the 2-part mechanism determining particle wavelength and velocity as de-
scribed in section 3.4.1. Electromagnetic and gravitational potentials might be thought of as
stretching and compressing particle oscillations, affecting their wavelengths and velocities
in equal measure.

Unfortunately, the Planck units do not reveal what physical attribute distinguishes one
type of electric charge from another. For now, the Planck unit formulation, like other descrip-
tions of electromagnetism, can only say what electric charge does and not what it is. Perhaps
a new formulation of electromagnetism in MKS units will lead to a physical description like
the zitterbewegung motion of particles to explain electric charge [18].

According to the formulas in table 2, the maximum charge potential is the Planck charge.
The elementary charge is related to the Planck charge according to the formula

e = tP
√
α.

At a glance, it might appear as though the elementary charge of 4.6× 10−45s is a shorter
time duration than the Planck time. Closer examination shows, however, that the square root
of the fine structure constant embedded in the elementary charge increases the time input
paired with the Planck time, effectively reducing the potential and not increasing it.

In light of the Planck unit formulas, we can treat the elementary charge as applying a
standard proportionality operator to the maximum Planck charge. The amount of reduction
between charges is the fine structure constant, divided equally between two instances of the
elementary charge.

Another important constant defined in Planck units is the Planck current

IP =
tP

tP
.

The Planck current is a dimensionless ratio of Planck time to Planck time in MKS units,
reflecting the net difference between charges. In MKS units, we see how a dimensionless
current describes the relationship between potential and resistance. Ohm’s law

V = IR

can be written in Planck units as
EP

tP
=

(
tP

tP

)
EP

tP

where the maximum voltage potential and impedance potential are EP/tP.
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6 Comparing Forces

The New Foundations Model described in sections 3, 4, and 5 provides a method for ex-
plaining the similarities and differences in mechanical, electromagnetic, and gravitational
forces. Table 13 compares the three different forces under the same scenario of an electron
in the hydrogen ground state.

The mechanical force of the electron is compared with the electrostatic and gravitational
potentials between the electron and proton. The table begins with the maximum force po-
tential in all three columns and then applies the proper reduction operators to produce the
known forces. I use the ground state because the electron’s wavelength and radius are equal,
making the mechanical and electromagnetic forces comparable. The comparison thus pre-
sumes that the electron’s wavelength is analogous to the radial distance between electron
and proton.

Table 13: Reduction operators for calculating the mechanical, electrostatic, and gravitational forces are
shown. Mechanical and electromagnetic forces are equal when particle wavelength is equal to the distance
between charges. Gravity is reduced by mass and distance operators.

Reduction Operator(s) Formula Mechanical Electrostatic Gravitational

Planck Force fP 1.21 × 1044 1.21 × 1044 1.21 × 1044

Electron rest mass βm m0/mP 4.19 × 10−23 4.19 × 10−23

Proton rest mass βm m0/mP 7.69 × 10−20

Electron inertial mass βλ m0/m 7.30 × 10−3

Electron period βm, βλ, βv Tλo/oC 2.23 × 10−27

Distance βl lP/r 3.05 × 10−25 3.05 × 10−25

Distance βl lP/r 3.05 × 10−25 3.05 × 10−25

Electron charge βq tP/tP
√
α 8.54 × 10−02

Proton charge βq tP/tP
√
α 8.54 × 10−02

Total Reductions 6.81 × 10−52 6.81 × 10−52 3.00 × 10−91

Force 8.24 × 10−8 8.24 × 10−8 3.63 × 10−47

From the proportionality operators used in the gravitational and electrostatic functions
it becomes evident why we experience a weaker force of gravity than electromagnetism.
The maximum potential of both interactions is the Planck force which is embedded in the
Coulomb and gravitational constants; and both interactions share the same reductions in dis-
tance between the proton and electron. What remains explains the difference in electromag-
netic and gravitational potentials. The electrostatic force is only further reduced in magni-
tude by the fine structure constant in the ratio of elementary charge to Planck charge, defined
as t2

Pα/t
2
P. The gravitational potential, on the other hand, is also reduced by the ratios of the

particle masses to their maximum mass potentials. The comparable reductions are about 0.7
percent in electric charge versus about 42 orders of magnitude in mass. The effect of rest
mass is to substantially reduce the energy potential of massive particles from the maximum
energy potential EP. If massive particles reached the maximum mass/momentum/energy po-
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tential at the Planck scale, there would be no reduction in the strength of gravity due to these
operators.

In physical terms, the mass and energy of a massive particle is limited by its Compton
wavelength, which is the maximum limit of its oscillation frequency. The Higgs field that
generates rest mass prevents the particle from oscillating faster, reducing its wavelength and
increasing its mass. Mass reduction prevents particles from having a larger impact on the
gravitational field.

The electromagnetic and gravitational forces in table 13 were calculated using the grav-
itational constant and coulomb constant functions described in the previous two sections.
The mechanical force was also calculated by applying reduction operators to the maximum
force potential according to 17

FP =
lPmP

t2
P

kgm/s2.

To determine which reduction operators to use, we can compare the Planck potential
equation to the same formula in reduced quantities of length, mass, and time

F =
om
TλT

kgm/s2. (27)

According to 10, the value in the numerator is invariant and requires no reduction. We
also saw in section 3.7.2 that inputs of wavelength and mass are not necessary for calculating
a particle’s energy for the same reason.

The denominator has two values of Planck time that do need to be reduced into values
of Tλ and T . These transformations require the following operators:

Tλ = tP βm βλ

T = tP βm βλ βv.

Tλ transforms the invariant quantum constant lPmP into the right amount of inertial
mass, or momentum. The physical property quantified by Tλ is the spatial reduction from the
Planck scale, represented by the particle’s wavelength. The mass and wavelength operators
produce the correct spatial reduction.

The physical property quantified by T is the particle’s temporal reduction from the
Planck scale. The mass, wavelength, and velocity operators produce the correct temporal
reduction. Table 13 consolidates the five operators into three for comparison with the other
forces.

6.1 Quantized Angular Momentum

The relative magnitudes of mechanical and electrostatic forces acting on an electron in the
hydrogen atom could offer clues about the quantization of momentum and allowed atomic
orbitals. The generally accepted formula for angular momentum

L = m0vrn = n~

can be evaluated in detail by replacing ~ with lPmPc

rn = n
(

mP

me

) (c
v

)
lP.
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The formula now resembles the de Broglie relation but with rn replacing wavelength in
the ground state. An additional value of the orbital number n appears on the right-hand side
accounting for different orbitals.

We can reduce the equation by replacing the rest mass operator and Planck length with
the Compton wavelength, and replacing the velocity operator c/v with n/α giving

rn = oC

(
n2

α

)
.

The relationship between radius and wavelength is thus

rn = onn = a0n2 (28)

where on is the electron wavelength in the nth orbital, and a0 is the Bohr radius.
The formula shows that the electron’s wavelength increases in units of n while the radius

increases in units of n2. However, there is nothing in ~ that suggests the atomic orbitals
are quantized by Planck’s constant. As I argued in 3, Planck’s constant is invariant for all
quantities of op and ET , including for fine and hyperfine transitions of the electron.

We can evaluate the standing wave requirement in light of the mechanical and elec-
trostatic forces acting on the electron. When we compare the relative strengths of the two
forces, we find that they balance only in the observed orbitals. This is because moving out-
ward from the ground state, the electrostatic force drops off faster than the mechanical force
due to 28—until the electron wavelength doubles and the two forces balance again. The
transition energy is the correct amount to relocate the electron from one orbital to another.

Table 14 gives the energy equivalence of the electromagnetic and mechanical forces for
each of the transitions. The change in energy potential due to the electrostatic force was

Table 14: Electrostatic and mechanical forces balance in orbital intervals but not in between.

Trans ∆U(N) ∆U(J) ∆KE(Ge/V2) γ(Ge/V2)

1-2 −7.7196 × 10−8 −10.1987 −10.1987 10.1988
1-3 −8.1326 × 10−8 −12.0874 −12.0874 12.0875
1-4 −8.2021 × 10−8 −12.7484 −12.7484 12.7485
2-3 −4.1298 × 10−9 −1.88865 −1.88865 1.88867
2-4 −4.8247 × 10−9 −2.54968 −2.54968 2.54970
3-4 −6.9492 × 10−10 −0.661028 −0.661028 0.661034

calculated by converting force into energy according to 16.

7 Fine Tuning the Constants

Physical constants are comprised of natural quantities of length, mass, and time. It is there-
fore advantageous to obtain the most accurate values possible for these fundamental units.

The New Foundations Model provides a framework for improving the values of physical
constants in table 2 and the Planck units they embody. With the understanding that many
traditional constants are comprised of the Planck units, measured values of constants like the
speed of light and Planck’s constant serve as accurate measurements of the ratios between
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Planck units. These constants demonstrate that while individual Planck units lie outside
the range of direct measurement [13], the ratios between Planck units can be measured
accurately.

Each measured ratio between Planck units provides a constraint on the possible values
of the Planck units. Applying these constraints collectively through the science of metrology
may improve the values of all derived constants.

Under the redefinition of the International System of Units in May 2019, Planck’s con-
stant and the speed of light are given exact values while CODATA values of the Planck units
have a relative standard uncertainty of 1.1 × 10−5. Using the precise values of Planck’s con-
stant and the speed of light as expected values, and the Planck unit formulas for ~ and c in
table 2, we can assess the degree to which the Planck units vary from expected values. Ta-
ble 15 compares the exact values with values calculated using the Planck length, mass, and
time. Note that calculations performed using CODATA Planck units do fall within expected
ranges of uncertainty.

Table 15: Deviation between exactly defined constants and values calculated using the Planck units provide
information for improving the values of physical constants.

Constant Exact value Planck formula Planck unit value Deviation

c 299, 792, 458 m/s lP/tP 299, 792, 423 m/s 0.999999 88
~ 1.054571817 × 10−34 kgm2/s l2PmP/tP 1.05457151 × 10−34 kgm2/s 0.999999 71
~/c 3.51767294 × 10−43 kgm lPmP 3.51767233 × 10−43 kgm 0.999999 83
~/c2 1.17336939 × 10−51 kgs mPtP 1.17336933 × 10−51 kgs 0.999999 95

From the table we see that the product of Planck mass and time is closest to its target
value, while the ratio l2PmP/tP is furthest.

We can also use the symmetries and equations presented in section 3 to evaluate the
accuracy of measured values compared to theoretical values. For example, 10 requires that
each value in table 16 be the same (shown in non-reduced form).

Table 16: Proposed symmetries offer theoretical constraints on the value of constants. According to the New
Foundations Model, each of the following values should be the same.

Formula Value

h/c 2.21021 90943 × 10−42

λCme 2.21021 90943 × 10−42

λC,µmµ 2.21021 90937 × 10−42

2πlPmP 2.21021 87129 × 10−42

The ratio of h/c in the first row is exactly defined under the 2019 redefinition of units.
Rows two and three show values of the same constant calculated using the measured mass
and Compton wavelength of the electron and muon. Row four calculates the quantum con-
stant using current values of Planck length and Planck mass. Again, the values fall within
CODATA ranges of uncertainty, but the comparison shows how we can use different mea-
sured values and formulas to calibrate the constants. This example shows the degree to
which the value of lPmP differs from values produced using measurements of the electron
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and muon, as well as measurements of Planck’s constant and the speed of light. We also
learn how much the product of Planck length and mass needs to increase to meet the de-
fined, target value.

Table 15 shows that Planck’s constant and the speed of light yield accurate values for
three out of the six product and quotient relationships between pairs of fundamental Planck
units (where the precision of ~ and c constitute accurate values). We get accurate values for
two of the three product relationships in lPmP and mPtP, but no value for lPtP. We get an
accurate value for one of the three quotient relationships in the speed of light (length and
time), but no value for the quotients of length and mass, or time and mass.

Given current information, an accurate measurement of any one of the three remaining
paired relationships enables the derivation of all three extensive Planck unit values. For
example, an accurate value of lPtP can be used to isolate m2

P in the formula lPtPm2
P (~2/c3).

With Planck mass we can determine Planck length using the quantum constant lPmP, and
the value of tP from the speed of light, lP/tP.

Similarly, it is easy to show that quotients of either mass and time or mass and length
yield values of all three natural units.

In section 4, I showed that ratios of length and mass to their Planck unit values determine
the strength of massive bodies on the gravitational field, where the quotient of Planck length
and mass is embedded in the gravitational constant. The remaining component of the gravi-
tational constant, c2, is well defined, suggesting that an accurate measurement of lP/mP will
improve the value of the gravitational constant. In fact, the pursuit of a more accurate grav-
itational constant can be superseded by the objective of producing a more accurate value of
lP/mP as this not only improves G but also improves the values of all constants comprised of
the fundamental Planck units. In addition, equation 2 and section 4 depict the gravitational
constant as an artifact constructed from more elemental units of length, mass, and time.

Obtaining a more precise measurement of the gravitational constant has proved diffi-
cult in an earth environment. The inhomogeneous distribution of matter makes it difficult to
reproduce similar measurement results over different times and places. Redefining the ob-
jective as measuring lP/mP may reveal alternatives to current measurement methodologies.

Given the new Planck unit formulas in table 2, it is possible to improve the value of
the traditional gravitational constant in indirect ways. While any measurement, constraint,
or theoretical insight that improves the value of lP/mP improves the value of G, an accu-
rate measurement of lPtP or mP/tP will also produce accurate values of all three Planck
units and all the constants comprised of them, including G. The pursuit of a more accurate
gravitational constant can therefore expand its scope to the measurement of these two pairs.

Although Planck’s constant and the speed of light do not provide enough information to
derive accurate values of the fundamental Planck units, they provide sufficient information
to create consistent sets of Planck units. For a given value of one unit, values of the other
two units can be calculated in the proper proportions defined by ~ and c, using the formulas
in table 15.

Figure 10 illustrates the collective inconsistency of current CODATA Planck unit values,
given the ratios defined by Planck’s constant and the speed of light. Each node of the equi-
lateral triangle represents one of the three fundamental Planck units with current CODATA
values indexed at 1.0. Three proportionally consistent sets of Planck units are plotted as
triangles above the base triangle, where one node of each triangle is the indexed CODATA
value and the other two Planck units are calculated using the formulas in table 15. For exam-
ple, the blue triangle uses the CODATA value of Planck length, 1.616255×10−35m, and plots
corresponding values of Planck mass and time in the correct proportions. Each proportion-
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Fig. 10: caption

ally consistent set of Planck units produces defined values of ~ and c exactly. Proportionally
consistent values of the Planck units fall within CODATA ranges of uncertainty.

8 A Natural Unit System

The New Foundations Model defines a natural unit system based on two key assumptions.
The first assumption is that the fundamental Planck units of length, mass, and time have
definitive quantities coinciding at a point of maximum potential. The second assumption
is that all three unit types have the same quantized intervals of length, making proportions
comparable across unit types. According to this system, the three fundamental Planck units
can be described as follows

• Planck Length The Planck length is the minimum natural unit of length. Quantities of
length are integer multiples of the Planck length. Length potential has a maximum value
of 1 at the Planck length and approaches 0 at infinite distance.

• Planck Mass The Planck Mass is the maximum natural unit of mass and the greatest
mass potential. A particle’s rest mass reduces its maximum potentials from the Planck
scale down to the Compton scale. Mass potential has a maximum value of 1 at the Planck
length and approaches 0 at infinite distance.

• Planck Time The Planck time is the minimum natural unit of time. Time is quantified in
integer units of the Planck length, where one unit of time is equal to one unit of length
counted at the speed of light. Time potential has a maximum value of 1 at the Planck
length.
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The natural unit system works by combining the three fundamental units into different
ratios, producing maximum potentials of natural phenomena. Table 2 summarizes the max-
imum potentials and operators embedded in most of the historical constants; however, the
traditional form of these constants is no longer necessary. With the knowledge of how these
constants function, it is easier to construct maximum potentials and operators specifically
for a given question.

The practice of assigning constants like c, ~ and G a value of 1 follows naturally from
the principle of maximum potential and proportionality. Different unit types are normalized
when maximum potentials are set to 1 and proportionality operators are constructed on a
scale of 0 to 1. The New Foundations Model clarifies the natural unit scale including how to
assign these values.

9 Conclusion

More than 120 years after Max Planck proposed natural units of length, mass, and time, the
constants used predominantly in physics today are composite constants including ~ and G.
The physical meaning of these constants is hidden in the ambiguity of their values. The com-
posite quantities fail to explain why Planck’s constant gives the momentum and energy of a
photon, or why the gravitational constant determines the force generated by a massive body.
Replacing these constants with natural units of length, mass, and time offers a refreshing
look at the physical dynamics encoded in the equations of physics.

The New Foundations Model of physics is the first attempt at incorporating this new in-
formation into a physical description of the world. It challenges the presumed incompatibil-
ity between an intuitive description of the quantum universe, and the abstract mathematical
formulations developed over the past century. While it doesn’t address the genuinely, non-
classical phenomenon of wave function collapse, it lifts the veil over many abstruse physical
transformations revealing quantities of length, mass, and time. It justifies the consideration
of quantum oscillations as more than mathematical symbols, but as veritable, physical dy-
namics.

The model is appealing because of its simplicity in explaining natural laws. It reduces
the long inventory of composite constants down to three fundamental units, and replaces at
least nine electromagnetic units with units of length, mass, and time. From two equalities it
defines momentum, velocity, acceleration, force, action, and energy in the simple, conserved
relationships between the three fundamental units.

The model’s applicability to particle mechanics, gravity, and electromagnetism portends
a deeper unification in our understanding of the natural universe and may contribute to the
search for a grand unified theory. The principles of maximum potential and proportionality
shed new light on existing theories and will catalyze interesting new theories of the natural
universe.

The New Foundations Model will have a positive impact the field of metrology. Count-
less experiments have steadily improved the accuracy of physical constants that can now
be interpreted as ratios between natural units of length, mass, and time. Incorporating this
new model into measurement sciences will improve the Planck unit values as well as the
constants they define.

The question may be asked why it has taken so long to recognize the importance of
natural units in the construct of physical constants, and to incorporate this information into
a description of the natural world. Contemporary theories are deeply abstract, and until
the mathematical formulations invoke a better understanding of the universe in physically
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meaningful ways, these theories will remain on tenuous foundations. Indications that our un-
derstanding is improving will become apparent as fewer aspects of theories become subject
to interpretation, as more theories are ruled out, and as consensus grows within the scientific
community on the meaning of preferred theories.

The imperative that physical theories offer more than a mathematical formulation in
their ability to explain the physical universe was expressed well by David Deutsch

“ Being able to predict things or to describe them, however accurately, is not at all
the same thing as understanding them...Facts cannot be understood just by being
summarized in a formula, any more than by being listed on paper or committed to
memory. They can be understood only by being explained. ” ( [19])

A Derivations

The principle of maximum potential gives a simple method for determining the Planck unit formulas of
composite constants—the formulas match the dimensionality of the constant. Formulas are easily confirmed
with calculation.

Formulas for the gravitational constant and Planck’s constant can also be derived from the traditional
formulas of Planck length and mass. The two formulas stated in terms of the gravitational constant are

G =
l2Pc3

~

and

G =
~c
m2

P

.

Setting the equations equal to each other yields a formula for ~ in terms of Planck length, Planck mass,
and the speed of light

l2Pc3

~
=
~c
m2

P

.

Simplifying gives equation 1. The equations for Planck length and Planck mass can also be written in
terms of Planck’s constant

~ =
l2Pc3

G
and

~ =
Gm2

P

c
.

Setting them equal to each other yields a formula for the gravitational constant in terms of Planck length,
Planck mass, and the speed of light

l2Pc3

G
=

Gm2
P

c
.

Simplifying gives equation 2.
The Planck charge is a maximum potential that determines the values of a number of other constants.

The Planck charge can be derived using equations for Planck inductance that appeared on the Planck units
Wikipedia page in November 2019

LP =
EP

IP
=

mPl2P
q2

P

.

Restating this equality in terms of the Planck current gives

IP =
EPq2

P

mPl2P
.
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Substituting the equation for Planck current into the equation for Planck charge

qP = IPtP

produces an equation for the Planck charge in terms of the MKS units

qP =
EPq2

PtP
mPl2P

.

Reducing the equation gives

qP =
mPl2Pt2P
mPl2PtP

= tP.

Evidence that the Planck charge is equal to the Planck time is found in the consistency of the electro-
magnetic units given in table 12, the formulas given in table 2, and in the results of calculations performed
using formulas like Coulomb’s law when charge is converted to seconds.
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