(************** Content-type: application/mathematica **************
                     CreatedBy='Mathematica 5.2'

                    Mathematica-Compatible Notebook

This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.

To get the notebook into a Mathematica-compatible application, do
one of the following:

* Save the data starting with the line of stars above into a file
  with a name ending in .nb, then open the file inside the
  application;

* Copy the data starting with the line of stars above to the
  clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.

For more information on notebooks and Mathematica-compatible 
applications, contact Wolfram Research:
  web: http://www.wolfram.com
  email: info@wolfram.com
  phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from 
Wolfram Research.
*******************************************************************)

(*CacheID: 232*)


(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[     20049,        766]*)
(*NotebookOutlinePosition[     20725,        790]*)
(*  CellTagsIndexPosition[     20681,        786]*)
(*WindowFrame->Normal*)



Notebook[{

Cell[CellGroupData[{
Cell["Energie oscillations", "Title"],

Cell[CellGroupData[{

Cell["Question 1", "Subsubsection",
  FormatType->TextForm],

Cell[TextData[{
  "Une masse ",
  StyleBox["m",
    FontSlant->"Italic"],
  " est attach\[EAcute]e \[AGrave] un ressort et oscille avec une \
p\[EAcute]riode ",
  StyleBox["T",
    FontSlant->"Italic"],
  ". L'\[EAcute]nergie totale du syst\[EGrave]me vaut ",
  StyleBox["E",
    FontSlant->"Italic"],
  ".\na) Que vaut la raideur ",
  StyleBox["k",
    FontSlant->"Italic"],
  " du ressort ?\nb) Quelle est l'amplitude ",
  StyleBox["A",
    FontSlant->"Italic"],
  " de l'oscillation ?"
}], "Text"],

Cell[TextData[{
  StyleBox["Corrig\[EAcute] 1",
    FontSlant->"Italic"],
  "\nLa p\[EAcute]riode du syst\[EGrave]me est donn\[EAcute]e par ",
  StyleBox["T",
    FontSlant->"Italic"],
  "=2\[Pi]",
  Cell[BoxData[
      FormBox[
        SqrtBox[
          StyleBox[\(m\/k\),
            FontSlant->"Italic"]], TextForm]]],
  ", ce qui permet de trouver ",
  StyleBox["k=",
    FontSlant->"Italic"],
  Cell[BoxData[
      FormBox[
        FractionBox[
          RowBox[{"4", 
            FormBox[\(\[Pi]\^2\),
              "TextForm"], 
            StyleBox["m",
              FontSlant->"Italic"]}], 
          FormBox[
            SuperscriptBox[
              StyleBox["T",
                FontSlant->"Italic"], "2"],
            "TextForm"]], TextForm]]],
  ". L'\[EAcute]nergie totale est \[EAcute]gale \[AGrave] l'\[EAcute]nergie \
potentielle \[EAcute]lastique lorsque la masse est immobile. Elle s'exprime \
alors par ",
  Cell[BoxData[
      FormBox[
        StyleBox[\(E\_\[EAcute]last\),
          FontSlant->"Italic"], TextForm]]],
  "=",
  Cell[BoxData[
      FormBox[
        FractionBox[
          RowBox[{
            StyleBox["k",
              FontSlant->"Italic"], 
            FormBox[
              SuperscriptBox[
                StyleBox["A",
                  FontSlant->"Italic"], "2"],
              "TextForm"]}], "2"], TextForm]]],
  " ce qui permet de trouver ",
  StyleBox["A",
    FontSlant->"Italic"],
  "=",
  Cell[BoxData[
      FormBox[
        FractionBox[
          StyleBox["T",
            FontSlant->"Italic"], \(2  \[Pi]\)], TextForm]]],
  Cell[BoxData[
      SqrtBox[
        FractionBox[
          RowBox[{"2", 
            StyleBox["E",
              FontSlant->"Italic"]}], 
          StyleBox["m",
            FontSlant->"Italic"]]]]]
}], "Text",
  FormatType->TextForm],

Cell[BoxData[
    \(k[m_, T_] := 4  Pi^2*m/T^2\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(\(\(k[0.3, 0.3]\)\(\ \)\( (*\ p\[EAcute]riode\ *) \)\)\)], "Input"],

Cell[BoxData[
    \(131.5947253478581`\)], "Output"]
}, Open  ]],

Cell[BoxData[
    \(A[m_, T_, Etot_] := T/\((2  Pi)\) Sqrt[2  Etot/m]\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(A[0.3, 0.3, 3]\)], "Input"],

Cell[BoxData[
    \(0.21352876302515314`\)], "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Question 2", "Subsubsection",
  FormatType->TextForm],

Cell[TextData[{
  "Une automobile de masse ",
  StyleBox["m",
    FontSlant->"Italic"],
  " percute un mur de briques pour un test de s\[EAcute]curit\[EAcute]. La \
pare choc se comporte comme un ressort de raideur ",
  StyleBox["k",
    FontSlant->"Italic"],
  " et est comprim\[EAcute] d'une longueur ",
  StyleBox["x",
    FontSlant->"Italic"],
  " lorsque la voiture s'immobilise. En supposant qu'aucune \[EAcute]nergie \
ne se perd durant le choc, quelle est la vitesse de la voiture avant l'impact \
?"
}], "Text"],

Cell[TextData[{
  StyleBox["Corrig\[EAcute] 2",
    FontSlant->"Italic"],
  "\nL'\[EAcute]nergie cin\[EAcute]tique de la voiture se transforme en \
\[EAcute]nergie potentielle \[EAcute]lastique, ce qui permet d'\[EAcute]crire \
",
  Cell[BoxData[
      FormBox[
        FractionBox[
          RowBox[{
            StyleBox["m",
              FontSlant->"Italic"], 
            FormBox[
              SuperscriptBox[
                StyleBox["v",
                  FontSlant->"Italic"], "2"],
              "TextForm"]}], "2"], TextForm]]],
  "=",
  Cell[BoxData[
      FormBox[
        FractionBox[
          RowBox[{
            StyleBox["k",
              FontSlant->"Italic"], 
            FormBox[
              SuperscriptBox[
                StyleBox["x",
                  FontSlant->"Italic"], "2"],
              "TextForm"]}], "2"], TextForm]]],
  " et de trouver ",
  StyleBox["v=",
    FontSlant->"Italic"],
  Cell[BoxData[
      FormBox[
        SqrtBox[
          StyleBox[\(k\/m\),
            FontSlant->"Italic"]], TextForm]]],
  StyleBox["x",
    FontSlant->"Italic"]
}], "Text"],

Cell[CellGroupData[{

Cell[BoxData[{
    \(v[m_, k_, x_] := Sqrt[k/m] x\), "\[IndentingNewLine]", 
    \(v[1300, 3*10^6, 0.045]\)}], "Input"],

Cell[BoxData[
    \(2.161730076368676`\)], "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Question 3", "Subsubsection",
  FormatType->TextForm],

Cell[TextData[{
  "Un syst\[EGrave]me masse-ressort oscille avec une amplitude ",
  StyleBox["A",
    FontSlant->"Italic"],
  ". La masse vaut ",
  StyleBox["m",
    FontSlant->"Italic"],
  " et la raideur du ressort ",
  StyleBox["k",
    FontSlant->"Italic"],
  ".\na) Quelle est l'\[EAcute]nergie m\[EAcute]canique du syst\[EGrave]me ?\n\
b) Que vaut la vitesse maximale de la masse ?\nc) Quelle est son \
acc\[EAcute]l\[EAcute]ration maximale ?"
}], "Text"],

Cell[TextData[{
  StyleBox["Corrig\[EAcute] 3",
    FontSlant->"Italic"],
  "\nL'\[EAcute]nergie m\[EAcute]canique est \[EAcute]gale \[AGrave] l'\
\[EAcute]nergie potentielle \[EAcute]lastique lorsque la masse est immobile. \
Elle s'exprime alors par ",
  Cell[BoxData[
      FormBox[
        StyleBox[\(E\_\[EAcute]last\),
          FontSlant->"Italic"], TextForm]]],
  "=",
  Cell[BoxData[
      FormBox[
        FractionBox[
          RowBox[{
            StyleBox["k",
              FontSlant->"Italic"], 
            FormBox[
              SuperscriptBox[
                StyleBox["A",
                  FontSlant->"Italic"], "2"],
              "TextForm"]}], "2"], TextForm]]],
  ". La vitesse maximale est atteinte lorsque la masse passe par sa position \
d'\[EAcute]quilibre. L'\[EAcute]nergie m\[EAcute]canique est alors \
\[EAcute]gale \[AGrave] l'\[EAcute]nergie cin\[EAcute]tique de la masse, ce \
qui permet de trouver ",
  Cell[BoxData[
      FormBox[
        StyleBox[\(v\_max\),
          FontSlant->"Italic"], TextForm]]],
  "=",
  Cell[BoxData[
      FormBox[
        SqrtBox[
          StyleBox[\(k\/m\),
            FontSlant->"Italic"]], TextForm]]],
  StyleBox["A",
    FontSlant->"Italic"],
  ". L'acc\[EAcute]l\[EAcute]ration est maximale lorsque la masse est \
immobile. La force qu'elle subit vaut alors, en grandeur, ",
  StyleBox["kA",
    FontSlant->"Italic"],
  " et son acc\[EAcute]l\[EAcute]ration ",
  StyleBox["a",
    FontSlant->"Italic"],
  "=",
  Cell[BoxData[
      \(TextForm\`kA\/m\)],
    FontSlant->"Italic"],
  "."
}], "Text",
  FormatType->TextForm],

Cell[BoxData[
    \(Etot[A_, k_, m_] := k*A^2/2\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(Etot[0.03, 150, 0.45]\)], "Input"],

Cell[BoxData[
    \(0.0675`\)], "Output"]
}, Open  ]],

Cell[BoxData[
    \(vmax[A_, k_, m_] := Sqrt[k/m]*A\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(vmax[0.03, 150, 0.45]\)], "Input"],

Cell[BoxData[
    \(0.5477225575051661`\)], "Output"]
}, Open  ]],

Cell[BoxData[
    \(a[A_, k_, m_] := k*A/m\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(a[0.03, 150, 0.45]\)], "Input"],

Cell[BoxData[
    \(10.`\)], "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Question 4", "Subsubsection",
  FormatType->TextForm],

Cell[TextData[{
  "Une masse ",
  StyleBox["m",
    FontSlant->"Italic"],
  " est accroch\[EAcute]e \[AGrave] un ressort de raideur ",
  StyleBox["k",
    FontSlant->"Italic"],
  " et oscille sur un plan horizontal sans frottement avec une amplitude ",
  StyleBox["A",
    FontSlant->"Italic"],
  ".\na) Que vaut l'\[EAcute]nergie totale du syst\[EGrave]me ?\nb) Quelle \
est la vitesse de la masse lorsque le d\[EAcute]placement vaut ",
  Cell[BoxData[
      FormBox[
        SubscriptBox[
          StyleBox["x",
            FontSlant->"Italic"], "1"], TextForm]]],
  " ?\nc) Que vaut l'\[EAcute]nergie cin\[EAcute]tique et l'\[EAcute]nergie \
potentielle \[EAcute]lastique lorsque le d\[EAcute]placement vaut ",
  Cell[BoxData[
      FormBox[
        SubscriptBox[
          StyleBox["x",
            FontSlant->"Italic"], "2"], TextForm]]],
  " ?"
}], "Text"],

Cell[TextData[{
  StyleBox["Corrig\[EAcute] 4",
    FontSlant->"Italic"],
  "\nLorsque la masse est immobile, toute l'\[EAcute]nergie est sous forme d'\
\[EAcute]nergie potentielle \[EAcute]lastique. Elle peut donc s'obtenir \
\[AGrave] l'aide de ",
  Cell[BoxData[
      FormBox[
        StyleBox[\(E\_tot\),
          FontSlant->"Italic"], TextForm]]],
  "=",
  Cell[BoxData[
      FormBox[
        StyleBox[\(E\_\[EAcute]last\),
          FontSlant->"Italic"], TextForm]]],
  "=",
  Cell[BoxData[
      FormBox[
        FractionBox[
          RowBox[{
            StyleBox["k",
              FontSlant->"Italic"], 
            FormBox[
              SuperscriptBox[
                StyleBox["A",
                  FontSlant->"Italic"], "2"],
              "TextForm"]}], "2"], TextForm]]],
  ". Lorsque la masse se trouve en ",
  Cell[BoxData[
      FormBox[
        SubscriptBox[
          StyleBox["x",
            FontSlant->"Italic"], "1"], TextForm]]],
  ", l'\[EAcute]nergie du syst\[EGrave]me se compose d'\[EAcute]nergie \
\[EAcute]lastique ",
  Cell[BoxData[
      FormBox[
        FractionBox[
          RowBox[{
            StyleBox["k",
              FontSlant->"Italic"], 
            FormBox[
              SubsuperscriptBox[
                StyleBox["x",
                  FontSlant->"Italic"], "1", "2"],
              "TextForm"]}], "2"], TextForm]]],
  " et d'\[EAcute]nergie cin\[EAcute]tique ",
  Cell[BoxData[
      FormBox[
        FractionBox[
          RowBox[{
            StyleBox["m",
              FontSlant->"Italic"], 
            FormBox[
              SubsuperscriptBox[
                StyleBox["v",
                  FontSlant->"Italic"], "1", "2"],
              "TextForm"]}], "2"], TextForm]]],
  ". La somme de ces deux \[EAcute]nergies est \[EAcute]gale \[AGrave] l'\
\[EAcute]nergie totale, ce qui permet de trouver la vitesse  ",
  StyleBox["v",
    FontSlant->"Italic"],
  "=",
  Cell[BoxData[
      FormBox[
        SqrtBox[
          StyleBox[
            RowBox[{\(k\/m\), 
              RowBox[{"(", 
                FormBox[
                  RowBox[{\(A\^2\), "-", 
                    FormBox[
                      FormBox[
                        SubsuperscriptBox["x", 
                          StyleBox["1",
                            FontSlant->"Plain"], "2"],
                        "TextForm"],
                      "TextForm"]}],
                  "TextForm"], ")"}]}],
            FontSlant->"Italic"]], TextForm]]],
  ". L'\[EAcute]nergie cin\[EAcute]tique en ",
  Cell[BoxData[
      FormBox[
        SubscriptBox[
          StyleBox["x",
            FontSlant->"Italic"], "2"], TextForm]]],
  " s'obtient par ",
  Cell[BoxData[
      FormBox[
        StyleBox[\(E\_tot\),
          FontSlant->"Italic"], TextForm]]],
  "-",
  Cell[BoxData[
      FractionBox[
        RowBox[{
          StyleBox["k",
            FontSlant->"Italic"], 
          FormBox[
            SubsuperscriptBox[
              StyleBox["x",
                FontSlant->"Italic"], "2", "2"],
            "TextForm"]}], "2"]]],
  " o\[UGrave] ",
  Cell[BoxData[
      FractionBox[
        RowBox[{
          StyleBox["k",
            FontSlant->"Italic"], 
          FormBox[
            SubsuperscriptBox[
              StyleBox["x",
                FontSlant->"Italic"], "2", "2"],
            "TextForm"]}], "2"]]],
  " est l'\[EAcute]nergie potentielle \[EAcute]lastique en ",
  Cell[BoxData[
      SubscriptBox[
        StyleBox["x",
          FontSlant->"Italic"], "2"]]],
  "."
}], "Text",
  FormatType->TextForm],

Cell[BoxData[
    \(Etot[m_, k_, A_] := k*A^2/2\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(Etot[0.06, 50, 0.09]\)], "Input"],

Cell[BoxData[
    \(0.20249999999999999`\)], "Output"]
}, Open  ]],

Cell[BoxData[
    \(v[m_, k_, A_, x_] := Sqrt[k/m*\((A^2 - x^2)\)]\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(v[0.06, 50, 0.09, 0.02]\)], "Input"],

Cell[BoxData[
    \(2.5331140255951103`\)], "Output"]
}, Open  ]],

Cell[BoxData[
    \(Ecin[m_, k_, A_, x_] := k/2 \((A^2 - x^2)\)\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(Ecin[0.06, 50, 0.09, 0.04]\)], "Input"],

Cell[BoxData[
    \(0.1625`\)], "Output"]
}, Open  ]],

Cell[BoxData[
    \(Epot[m_, k_, A_, x_] := k*x^2/2\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(Epot[0.06, 50, 0.09, 0.04]\)], "Input"],

Cell[BoxData[
    \(0.04`\)], "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Question 5", "Subsubsection"],

Cell[TextData[{
  "Une particule est anim\[EAcute]e d'un mouvement harmonique d'amplitude ",
  StyleBox["A",
    FontSlant->"Italic"],
  ". A quelle distance de la position d'\[EAcute]quilibre sa vitesse est-elle \
\[EAcute]gale \[AGrave] la moiti\[EAcute] de sa vitesse maximale ?"
}], "Text"],

Cell[TextData[{
  StyleBox["Corrig\[EAcute] 5\n",
    FontSlant->"Italic"],
  "La vitesse maximale est donn\[EAcute]e par",
  StyleBox[" ",
    FontSlant->"Italic"],
  " ",
  Cell[BoxData[
      FormBox[
        StyleBox[\(v\_max\),
          FontSlant->"Italic"], TextForm]]],
  "=",
  Cell[BoxData[
      FormBox[
        SqrtBox[
          StyleBox[\(k\/m\),
            FontSlant->"Italic"]], TextForm]]],
  StyleBox["A. ",
    FontSlant->"Italic"],
  "Lorsque la vitesse de la particule est \[EAcute]gale \[AGrave] la moiti\
\[EAcute] de la vitesse maximale, son \[EAcute]nergie cin\[EAcute]tique vaut \
",
  Cell[BoxData[
      FormBox[
        StyleBox[\(E\_cin\),
          FontSlant->"Italic"], TextForm]]],
  " = ",
  Cell[BoxData[
      FractionBox[
        RowBox[{
          StyleBox["m",
            FontSlant->"Italic"], 
          FormBox[
            RowBox[{
              StyleBox["(",
                FontSlant->"Italic"], 
              SuperscriptBox[
                FormBox[
                  RowBox[{
                    FractionBox[
                      StyleBox[
                        FormBox[\(v\_max\),
                          "TextForm"],
                        FontSlant->"Italic"], "2"], ")"}],
                  "TextForm"], "2"]}],
            "TextForm"]}], "2"]]],
  ".",
  " La conservation de l'\[EAcute]nergie totale permet d'\[EAcute]crire  ",
  Cell[BoxData[
      FormBox[
        StyleBox[\(E\_tot\),
          FontSlant->"Italic"], TextForm]]],
  "=",
  Cell[BoxData[
      FormBox[
        StyleBox[\(E\_cin\),
          FontSlant->"Italic"], TextForm]]],
  "+",
  Cell[BoxData[
      FormBox[
        StyleBox[\(E\_\[EAcute]last\),
          FontSlant->"Italic"], TextForm]]],
  " et de trouver ",
  StyleBox["x",
    FontSlant->"Italic"],
  "=",
  Cell[BoxData[
      FormBox[
        FractionBox[
          StyleBox[\(\@3\),
            FontSlant->"Italic"], "2"], TextForm]]],
  StyleBox["A",
    FontSlant->"Italic"]
}], "Text",
  FormatType->TextForm],

Cell[BoxData[
    \(x[A_] := Sqrt[3]/2*A\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(x[0.03]\)], "Input"],

Cell[BoxData[
    \(0.025980762113533156`\)], "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{

Cell["Question 6", "Subsubsection",
  FormatType->TextForm],

Cell[TextData[{
  "Un syst\[EGrave]me masse-ressort oscille avec une amplitude ",
  StyleBox["A",
    FontSlant->"Italic"],
  ". Le ressort a une raideur ",
  StyleBox["k ",
    FontSlant->"Italic"],
  "raideur et la masse vaut ",
  StyleBox["m",
    FontSlant->"Italic"],
  ".\na) Quelle est l'\[EAcute]nergie m\[EAcute]canique du syst\[EGrave]me ?\n\
b) Que vaut la vitesse maximale de la masse ?\nc) Quelle est son \
acc\[EAcute]l\[EAcute]ration maximale ?"
}], "Text"],

Cell[TextData[{
  "Corrig\[EAcute] 6\nL'\[EAcute]nergie m\[EAcute]canique est \[EAcute]gale \
\[AGrave] l'\[EAcute]nergie potentielle \[EAcute]lastique lorsque la masse \
est immobile. Elle s'exprime alors par ",
  Cell[BoxData[
      FormBox[
        StyleBox[\(E\_\[EAcute]last\),
          FontSlant->"Italic"], TextForm]]],
  "=",
  Cell[BoxData[
      FormBox[
        FractionBox[
          RowBox[{
            StyleBox["k",
              FontSlant->"Italic"], 
            FormBox[
              SuperscriptBox[
                StyleBox["A",
                  FontSlant->"Italic"], "2"],
              "TextForm"]}], "2"], TextForm]]],
  ". La vitesse maximale est atteinte lorsque la masse passe par sa position \
d'\[EAcute]quilibre. L'\[EAcute]nergie m\[EAcute]canique est alors \
\[EAcute]gale \[AGrave] l'\[EAcute]nergie cin\[EAcute]tique de la masse, ce \
qui permet de trouver ",
  StyleBox["v",
    FontSlant->"Italic"],
  "=",
  Cell[BoxData[
      FormBox[
        SqrtBox[
          StyleBox[\(k\/m\),
            FontSlant->"Italic"]], TextForm]]],
  StyleBox["A",
    FontSlant->"Italic"],
  ". L'acc\[EAcute]l\[EAcute]ration est maximale lorsque la masse est \
immobile. La force qu'elle subit vaut alors, en grandeur, ",
  StyleBox["kA",
    FontSlant->"Italic"],
  " et son acc\[EAcute]l\[EAcute]ration ",
  StyleBox["a",
    FontSlant->"Italic"],
  "=",
  Cell[BoxData[
      \(TextForm\`kA\/m\)],
    FontSlant->"Italic"],
  "."
}], "Text",
  FormatType->TextForm],

Cell[BoxData[
    \(Etot[A_, k_, m_] := k*A^2/2\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(Etot[0.025, 400, 0.6]\)], "Input"],

Cell[BoxData[
    \(0.12500000000000003`\)], "Output"]
}, Open  ]],

Cell[BoxData[
    \(vmax[A_, k_, m_] := Sqrt[k/m]*A\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(vmax[0.025, 400, 0.6]\)], "Input"],

Cell[BoxData[
    \(0.6454972243679029`\)], "Output"]
}, Open  ]],

Cell[BoxData[
    \(a[A_, k_, m_] := k*A/m\)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
    \(a[0.025, 400, 0.6]\)], "Input"],

Cell[BoxData[
    \(16.666666666666668`\)], "Output"]
}, Open  ]]
}, Open  ]]
}, Open  ]]
},
FrontEndVersion->"5.2 for Macintosh",
ScreenRectangle->{{0, 999}, {0, 746}},
WindowSize->{533, 700},
WindowMargins->{{Automatic, 122}, {Automatic, 0}},
ShowCellLabel->False,
Magnification->2
]

(*******************************************************************
Cached data follows.  If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at
the top of  the file.  The cache data will then be recreated when
you save this file from within Mathematica.
*******************************************************************)

(*CellTagsOutline
CellTagsIndex->{}
*)

(*CellTagsIndex
CellTagsIndex->{}
*)

(*NotebookFileOutline
Notebook[{

Cell[CellGroupData[{
Cell[1776, 53, 37, 0, 154, "Title"],

Cell[CellGroupData[{
Cell[1838, 57, 59, 1, 66, "Subsubsection"],
Cell[1900, 60, 500, 18, 102, "Text"],
Cell[2403, 80, 1816, 65, 145, "Text"],
Cell[4222, 147, 59, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[4306, 152, 87, 1, 42, "Input"],
Cell[4396, 155, 52, 1, 42, "Output"]
}, Open  ]],
Cell[4463, 159, 82, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[4570, 164, 47, 1, 42, "Input"],
Cell[4620, 167, 54, 1, 42, "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{
Cell[4723, 174, 59, 1, 66, "Subsubsection"],
Cell[4785, 177, 520, 14, 102, "Text"],
Cell[5308, 193, 1097, 39, 112, "Text"],

Cell[CellGroupData[{
Cell[6430, 236, 119, 2, 64, "Input"],
Cell[6552, 240, 52, 1, 42, "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{
Cell[6653, 247, 59, 1, 66, "Subsubsection"],
Cell[6715, 250, 461, 13, 128, "Text"],
Cell[7179, 265, 1594, 51, 165, "Text"],
Cell[8776, 318, 60, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[8861, 323, 54, 1, 42, "Input"],
Cell[8918, 326, 41, 1, 42, "Output"]
}, Open  ]],
Cell[8974, 330, 64, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[9063, 335, 54, 1, 42, "Input"],
Cell[9120, 338, 53, 1, 42, "Output"]
}, Open  ]],
Cell[9188, 342, 55, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[9268, 347, 51, 1, 42, "Input"],
Cell[9322, 350, 38, 1, 42, "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{
Cell[9409, 357, 59, 1, 66, "Subsubsection"],
Cell[9471, 360, 863, 25, 128, "Text"],
Cell[10337, 387, 3557, 120, 169, "Text"],
Cell[13897, 509, 60, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[13982, 514, 53, 1, 42, "Input"],
Cell[14038, 517, 54, 1, 42, "Output"]
}, Open  ]],
Cell[14107, 521, 79, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[14211, 526, 56, 1, 42, "Input"],
Cell[14270, 529, 53, 1, 42, "Output"]
}, Open  ]],
Cell[14338, 533, 76, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[14439, 538, 59, 1, 42, "Input"],
Cell[14501, 541, 41, 1, 42, "Output"]
}, Open  ]],
Cell[14557, 545, 64, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[14646, 550, 59, 1, 42, "Input"],
Cell[14708, 553, 39, 1, 42, "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{
Cell[14796, 560, 35, 0, 66, "Subsubsection"],
Cell[14834, 562, 294, 6, 76, "Text"],
Cell[15131, 570, 2008, 74, 144, "Text"],
Cell[17142, 646, 53, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[17220, 651, 40, 1, 42, "Input"],
Cell[17263, 654, 55, 1, 42, "Output"]
}, Open  ]]
}, Open  ]],

Cell[CellGroupData[{
Cell[17367, 661, 59, 1, 66, "Subsubsection"],
Cell[17429, 664, 472, 13, 128, "Text"],
Cell[17904, 679, 1490, 47, 165, "Text"],
Cell[19397, 728, 60, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[19482, 733, 54, 1, 42, "Input"],
Cell[19539, 736, 54, 1, 42, "Output"]
}, Open  ]],
Cell[19608, 740, 64, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[19697, 745, 54, 1, 42, "Input"],
Cell[19754, 748, 53, 1, 42, "Output"]
}, Open  ]],
Cell[19822, 752, 55, 1, 42, "Input"],

Cell[CellGroupData[{
Cell[19902, 757, 51, 1, 42, "Input"],
Cell[19956, 760, 53, 1, 42, "Output"]
}, Open  ]]
}, Open  ]]
}, Open  ]]
}
]
*)



(*******************************************************************
End of Mathematica Notebook file.
*******************************************************************)