Warning: Undefined array key "HTTP_REFERER" in /home/clients/5f3066c66025ccf8146e6c2cce553de9/web/spip/index.php on line 30

Deprecated: strtolower(): Passing null to parameter #1 ($string) of type string is deprecated in /home/clients/5f3066c66025ccf8146e6c2cce553de9/web/spip/index.php on line 30
Exercices sur la rotation des solides rigides - [Apprendre en ligne]
Dynamique du solide rigide
Exercices sur la rotation des solides rigides
Rotation. Solide rigide. Axe fixe. Moment d’inertie. Couple et moment de rappel

5 exercices sur la rotation de solides rigides autour d’un axe fixe.

Article mis en ligne le 8 février 2007
dernière modification le 6 décembre 2014

par bernard.vuilleumier

Exercices extraits de J. Cessac, G. Tréherne, Physique, classe terminale C. Fernand Nathan, Paris 1967.



Exercice 1
Un treuil est constitué d’un cylindre homogène de masse M=20 kg, de rayon r=10 cm et d’axe Z. Une corde enroulée sur le treuil soutient un solide S de masse m=10 kg. Les masses de la corde et de la manivelle ainsi que toutes les résistances passives (frottements et résistance de l’air) sont négligeables. Calculez :

  1. la tension T de la corde en situation d’équilibre ou de rotation uniforme
  2. l’accélération angulaire $\alpha$ du treuil si on lâche la manivelle
  3. l’accélération linéaire a du solide S dans sa chute lorsqu’on lâche la manivelle.

 Rép. 98.1 N, 49.05 rad/s2, 4.905 m/s2.



Exercice 2
Un petit gyroscope cylindrique de masse m=100 g et de 5 cm de rayon tourne autour de son axe à raison de 3600 tours par minute. Sachant qu’il s’arrête en 3 minutes sous l’action de résistances passives équivalentes à un couple que vous supposerez constant, calculez :

  1. l’accélération angulaire $\alpha$ du gyroscope
  2. le moment $\mathcal{M}$ du couple résistant
  3. le nombre de tours n effectués entre le début du ralentissement et l’arrêt.

 Rép. $-\frac{2\pi}{3}$ rad/s2, $-2.62\times 10^{-4}$ Nm, $5400.$



Exercice 3
Un cylindre homogène de rayon r=10 cm et de masse $m_{cyl}$=1 kg peut tourner autour de son axe de révolution horizontal Z. Il soutient un solide S de masse M=10 kg par l’intermédiaire d’une corde enroulée sur le cylindre. Le cylindre est traversé, suivant un diamètre, par une tige t portant à ses extrémités deux masses égales de valeur m=0.5 kg, pratiquement confondues avec leurs centres de gravité situés à une distance l=50 cm de l’axe Z. Le système est abandonné à lui-même sans
vitesse initiale. Calculez, en négligeant les masses de la corde et de la tige t ainsi que les résistances passives :

  1. l’accélération linéaire a du mouvement de S
  2. la tension T du brin qui supporte S pendant ce mouvement
  3. le nombre de tours n effectués par le cylindre depuis le départ jusqu’au moment où la corde quitte le cylindre sachant que la masse M est alors descendue d’une hauteur h=5 m
  4. la vitesse angulaire $\omega$ du cylindre à ce moment là.

 Rép. 2.76 m/s2, 70.47 N, 7.96, 52.57 rad/s.



Exercice 4
Un fil de masse négligeable passe sur la gorge d’une poulie de 100 g et de rayon r=6 cm. Vous supposerez que la poulie tourne sans frottement autour d’un axe horizontal et que toute la masse de la poulie est répartie sur sa circonférence. Le fil porte une masse M=300 g et une masse m=100 g. La masse M se trouve à 3 m au-dessus du sol et la masse m est au niveau du sol sans toutefois y reposer. Vous abandonnez le système à lui-même au temps t=0. Calculez :

  1. l’accélération prise par la masse M
  2. la tension T dans chaque brin pendant le mouvement
  3. la vitesse v de M lorsqu’elle arrive au sol
  4. la vitesse angulaire $\omega$ de la poulie lorsque M arrive au sol
  5. la force tangentielle F qu’il faut appliquer à la poulie pour qu’elle s’arrête après 6 tours, le fil supportant m étant coupé quand M arrive au sol.

 Rép. 3.92 m/s2, 1.77 et 1.37 N, 4.85 m/s, 80.87 rad/s, 0.52 N.



Exercice 5
Le pendule à ressort spiral qui règle le mouvement d’une montre a un moment d’inertie par rapport à l’axe de rotation de $10^{-6}$ $kgm^2$ et une période de 0.5 s. Calculez :

  1. la constante C du couple de rappel ;
  2. la vitesse angulaire $\omega$ maximale quand l’amplitude vaut $\pi$ radians
  3. le moment du couple de rappel quand l’amplitude vaut $\theta=\frac{\pi}{4}.$

 Rép. $1.58 \times 10^{-4}$ Nm, $39.48$ rad/s, $1.24 \times 10^{-4}$ Nm.

Autres exercices
 sur le calcul d’erreur
 sur le mouvement
 sur les mouvements relatifs
 sur la relativité galiléenne
 sur la relativité restreinte
 sur les forces d’inertie
 sur la quantité de mouvement
 sur la gravitation
 sur l’énergie
 sur l’énergie relativiste
 sur les oscillations harmoniques
 sur l’énergie et les oscillations
 sur la notion de flux
 sur les grandeurs de l’électromagnétisme et leurs relations
 sur le mouvement de particules chargées dans un champ électrique
 sur l’induction et l’auto-induction